Автомобильный портал
Поиск по сайту

Квантовое туннелирование. Туннельный эффект: на грани миров Квантовый барьер

  • Состояния электрона в атоме водорода
  • 1.9. 1S– состояние электрона в атоме водорода
  • 1.10. Спин электрона. Принцип Паули
  • 1.11. Спектр атома водорода
  • 1.12. Поглощение света, спонтанное и вынужденное излучения
  • 1.13. Лазеры
  • 1.13.1. Инверсия населенностей
  • 1.13.2. Способы создания инверсии населенностей
  • 1.13.3. Положительная обратная связь. Резонатор
  • 1.13.4. Принципиальная схема лазера.
  • 1.14. Уравнение Дирака. Спин.
  • 2. Зонная теория твердых тел.
  • 2.1. Понятие о квантовых статистиках. Фазовое пространство
  • 2.2. Энергетические зоны кристаллов. Металлы. Полупроводники. Диэлектрики
  • Удельное сопротивление твердых тел
  • 2.3. Метод эффективной массы
  • 3. Металлы
  • 3.1. Модель свободных электронов
  • При переходе из вакуума в металл
  • 3.2. Распределение электронов проводимости в металле по энергиям. Уровень и энергия Ферми. Вырождение электронного газа в металлах
  • Энергия Ферми и температура вырождения
  • 3.3. Понятие о квантовой теории электропроводности металлов
  • 3.4. Явление сверхпроводимости. Свойства сверхпроводников. Применение сверхпроводимости
  • 3.5. Понятие об эффектах Джозефсона
  • 4. Полупроводники
  • 4.1. Основные сведения о полупроводниках. Классификация полупроводников
  • 4.2. Собственные полупроводники
  • 4.3.Примесные полупроводники
  • 4.3.1.Электронный полупроводник (полупроводник n-типа)
  • 4.3.2. Дырочный полупроводник (полупроводник р-типа)
  • 4.3.3.Компенсированный полупроводник. Частично компенсированный полупроводник
  • 4.3.4.Элементарная теория примесных состояний. Водородоподобная модель примесного центра
  • 4.4. Температурная зависимость удельной проводимости примесных полупроводников
  • 4.4.1.Температурная зависимость концентрации носителей заряда
  • 4.4.2.Температурная зависимость подвижности носителей заряда
  • 4.4.3. Температурная зависимость удельной проводимости полупроводникаn-типа
  • 4.4.5. Термисторы и болометры
  • 4.5. Рекомбинация неравновесных носителей заряда в полупроводниках
  • 4.6. Диффузия носителей заряда.
  • 4.6.1. Диффузионная длина
  • 4.6.2. Соотношение Эйнштейна между подвижностью и коэффициентом диффузии носителей заряда
  • 4.7. Эффект Холла в полупроводниках
  • 4.7.1. Возникновение поперечного электрического поля
  • 4.7.2. Применение эффекта Холла для исследования полупроводниковых материалов
  • 4.7.3. Преобразователи Холла
  • 4.8. Магниторезистивный эффект
  • 5. Электронно-дырочный переход
  • 5.1.Образование электронно-дырочного перехода
  • 5.1.1. Электронно-дырочный переход в условиях равновесия (при отсутствии внешнего напряжения)
  • 5.1.2.Прямое включение
  • 5.1.3.Обратное включение
  • 5.2.КласСификация полупроводниковых диодов
  • 5.3. Вольт-амперная характеристика электроннно-дырочного перехода. Выпрямительные, детекторные и преобразовательные диоды
  • 5.3.1.Уравнение вольт-амперной характеристики
  • Классификация полупроводниковых диодов
  • 5.3.2.Принцип действия и назначение выпрямительных, детекторных и преобразовательных диодов
  • 5.4. Барьерная емкость. Варикапы
  • 5.5.Пробой электронно-дырочного перехода
  • 5.6. Туннельный эффект в вырожденном электронно-дырочном переходе. Туннельные и обращенные диоды
  • 6.Внутренний фотоэффект в полупроводниках.
  • 6.1.Фоторезистивный эффект. Фоторезисторы
  • 6.1.1.Воздействие излучения на полупроводник
  • 5.1.2.Устройство и характеристики фоторезисторов
  • 6.2.Фотоэффект в электронно-дырочном переходе. Полупроводниковые фотодиоды и фотоэлементы.
  • 6.2.1.Воздействие света наp-n-переход
  • 7.Люминесценция твердых тел
  • 7.1.Виды люминесценции
  • 7.2.Электролюминесценция кристаллофосфоров
  • 7.2.1. Механизм свечения кристаллофосфоров
  • 7.2.2. Основные характеристики электролюминесценции кристаллофосфоров
  • 7.3.Инжекционная электролюминесценция. Устройство и характеристики светодиодных структур
  • 7.3.1.Возникновение излучения в диодной структуре
  • 7.3.2.Конструкция светодиода
  • 7.3.3.Основные характеристики светодиодов
  • 7.3.4.Некоторые применения светодиодов
  • 7.4 Понятие об инжекционных лазерах
  • 8. Транзисторы
  • 8.1.Назначение и виды транзисторов
  • 8.2.Биполярные транзисторы
  • 8.2.1 Структура и режимы работы биполярного транзистора
  • 8.2.2.Схемы включения биполярных транзисторов
  • 8.2.3.Физические процессы в транзисторе
  • 8.3.Полевые транзисторы
  • 8.3.1.Разновидности полевых транзисторов
  • 8.3.2.Полевые транзисторы с управляющим переходом
  • 8.3.3. Полевые транзисторы с изолированным затвором. Структуры мдп-транзисторов
  • 8.3.4.Принцип действия мдп-транзисторов с индуцированным каналом
  • 8.3.5. Мдп-транзисторы со встроенным каналом
  • 8.4. Сравнение полевых транзисторов с биполярными
  • Заключение
  • 1.Элементы квантовой механики 4
  • 2. Зонная теория твердых тел. 42
  • 3. Металлы 50
  • 4. Полупроводники 65
  • 5. Электронно-дырочный переход 97
  • 6.Внутренний фотоэффект в полупроводниках. 108
  • 7.Люминесценция твердых тел 113
  • 8. Транзисторы 123
  • 1.7. Понятие о туннельном эффекте.

    Туннельным эффектом называют прохождение частиц сквозь потенциальный барьер за счет волновых свойств частиц.

    Пусть частица, движущаяся слева направо, встречает на своем пути потенциальный барьер высотой U 0 и шириной l . По классическим представлениям частица беспрепятственно проходит над барьером, если ее энергия E больше высоты барьера (E > U 0 ). Если же энергия частицы меньше высоты барьера (E < U 0 ), то частица отражается от барьера и начинает двигаться в обратную сторону, сквозь барьер частица проникнуть не может.

    Вквантовой механике учитываются волновые свойства частиц. Для волны левая стенка барьера – это граница двух сред, на которой волна делится на две волны – отраженную и преломленную.Поэтому даже при E > U 0 возможно (хотя и с небольшой вероятностью) отражение частицы от барьера, а при E < U 0 имеется отличная от нуля вероятность того, что частица окажется по другую сторону потенциального барьера. В этом случае частица как бы «прошла сквозь туннель».

    Решим задачу о прохождении частицы сквозь потенциальный барьер для наиболее простого случая одномерного прямоугольного барьера, изображенного на рис.1.6. Форма барьера задается функцией

    . (1.7.1)

    Запишем уравнение Шредингера для каждой из областей: 1(x <0 ), 2(0< x < l ) и 3(x > l ):

    ; (1.7.2)

    ; (1.7.3)

    . (1.7.4)

    Обозначим

    (1.7.5)

    . (1.7.6)

    Общие решения уравнений (1), (2), (3) для каждой из областей имеют вид:

    Решение вида
    соответствует волне, распространяющейся в направлении оси x , а
     волне, распространяющейся в противоположном направлении. В области 1 слагаемое
    описывает волну, падающую на барьер, а слагаемое
     волну, отраженную от барьера. В области 3 (справа от барьера) имеется только волна, распространяющаяся в направлении x, поэтому
    .

    Волновая функция должна удовлетворять условию непрерывности, поэтому решения (6),(7),(8) на границах потенциального барьера необходимо «сшить». Для этого приравниваем волновые функции и их производные при x =0 и x = l :

    ;
    ;

    ;
    . (1.7.10)

    Используя (1.7.7) - (1.7.10), получимчетыре уравнения для определенияпяти коэффициентовА 1 , А 2 , А 3 , В 1 и В 2 :

    А 1 1 2 2 ;

    А 2 е xp ( l ) + В 2 е xp (- l )= А 3 е xp (ikl ) ;

    ik 1 – В 1 ) = 2 –В 2 ) ; (1.7.11)

    2 е xp (l )–В 2 е xp (- l ) = ik А 3 е xp (ikl ) .

    Чтобы получить пятое соотношение, введем понятия коэффициентов отражения и прозрачности барьера.

    Коэффициентом отражения назовем отношение

    , (1.7.12)

    которое определяет вероятность отражения частицы от барьера.

    Коэффициент прозрачности


    (1.7.13)

    дает вероятность того, что частица пройдет через барьер. Так как частица либо отразится, либо пройдет через барьер, то сумма этих вероятностей равна единице. Тогда

    R + D =1; (1.7.14)

    . (1.7.15)

    Это и есть пятое соотношение, замыкающее систему (1.7.11), из которой находятся всепять коэффициентов.

    Наибольший интерес представляет коэффициент прозрачности D . После преобразований получим

    , (7.1.16)

    где D 0 – величина, близкая к единице.

    Из (1.7.16) видно, что прозрачность барьера сильно зависит от его ширины l , от того, на сколько высота барьераU 0 превышает энергию частицыE , а также от массы частицыm .

    Склассической точки зрения прохождение частицы сквозь потенциальный барьер приE < U 0 противоречит закону сохранения энергии. Дело в том, что если классическая частица находилась бы в какой-то точке в области барьера (область 2 на рис. 1.7), то ее полная энергия оказалась бы меньше потенциальной энергии (а кинетическая – отрицательной!?). С квантовой точки зрения такого противоречия нет. Если частица движется к барьеру, то до столкновения с ним она имеет вполне определенную энергию. Пусть взаимодействие с барьером длится время t , тогда, согласно соотношению неопределенностей, энергия частицы уже не будет определенной; неопределенность энергии
    . Когда эта неопределенность оказывается порядка высоты барьера, он перестает быть для частица непреодолимым препятствием, и частица пройдет сквозь него.

    Прозрачность барьера резко убывает с его шириной (см. табл. 1.1.). Поэтому частицы могут проходить за счет туннельного механизма лишь очень узкие потенциальные барьеры.

    Таблица 1.1

    Значения коэффициента прозрачности для электрона при ( U 0 E ) = 5 эВ = const

    l , нм

    Мы рассмотрели барьер прямоугольной формы. В случае потенциального барьера произвольной формы, например такой, как показано на рис.1.7, коэффициент прозрачности имеет вид

    . (1.7.17)

    Туннельный эффект проявляется в ряде физических явлений и имеет важные практические приложения. Приведем некоторые примеры.

    1. Автоэлектронная (холодная) эмиссия электронов .

    В1922 г. было открыто явление холодной электронной эмиссии из металлов под действием сильного внешнего электрического поля. График зависимости потенциальной энергииU электрона от координатыx изображен на рис. Приx < 0 – область металла, в котором электроны могут двигаться почти свободно. Здесь потенциальную энергию можно считать постоянной. На границе металла возникает потенциальная стенка, не позволяющая электрону покинуть металл, он может это сделать, лишь приобретя добавочную энергию, равную работе выходаA . За пределами металла (приx > 0) энергия свободных электронов не меняется, поэтому приx> 0 графикU (x ) идет горизонтально. Создадим теперь вблизи металла сильное электрическое поле. Для этого возьмем металлический образец в форме острой иглы и подсоединим его к отрицательному полюсу источни Рис. 1.9 Принцип действия туннельного микроскопа

    ка напряжения, (он будет катодом); поблизости расположим другой электрод (анод), к которому присоединим положительный полюс источника. При достаточно большой разности потенциалов между анодом и катодом можно создать вблизи катода электрическое поле с напряженностью порядка 10 8 В/м. Потенциальный барьер на границе металл – вакуум становится узким, электроны просачиваются сквозь него и выходят из металла.

    Автоэлектронная эмиссия использовалась для создания электронных ламп с холодными катодами (сейчас они практически вышли из употребления), в настоящее время она нашла применение в туннельных микроскопах, изобретенных в 1985 г. Дж. Биннингом, Г. Рорером и Э. Руска.

    В туннельном микроскопе вдоль исследуемой поверхности перемещается зонд - тонкая игла. Игла сканирует исследуемую поверхность, находясь так близко от нее, что электроны из электронных оболочек (электронных облаков) поверхностных атомов за счет волновых свойств могут попасть на иглу. Для этого на иглу подаем “плюс” от источника, а на исследуемый образец - “минус”. Туннельный ток пропорционален коэффициенту прозрачности потенциального барьера между иглой и поверхностью, который согласно формуле (1.7.16) зависит от ширины барьера l . При сканировании иглой поверхности образца туннельный ток изменяется в зависимости от расстоянияl , повторяя профиль поверхности. Прецизионные перемещения иглы на малые расстояния осуществляют с помощью пьезоэффекта, для этого закрепляют иглу на кварцевой пластине, которая расширяется или сжимается, когда к ней прикладывается электрическое напряжение. Современные технологии позволяют изготовить иглу столь тонкую, что на ее конце располагается один единственный атом.

    Изображение формируется на экране дисплея ЭВМ. Разрешение туннельного микроскопа так высоко, что позволяет “увидеть” расположение отдельных атомов. На рис.1.10 приведено в качестве примера изображение атомной поверхности кремния.

    2. Альфа-радиоактивность (– распад ). В этом явлении происходит спонтанное превращение радиоактивных ядер, в результате которого одно ядро (его называют материнским) испускает– частицу и превращается в новое (дочернее) ядро с зарядом, меньшим на 2 единицы. Напомним, что– частица (ядро атома гелия) состоит из двух протонов и двух нейтронов.

    Если считать, что- частица существует как единое образование внутри ядра, то график зависимости ее потенциальной энергии от координаты в поле радиоактивного ядра имеет вид, показанный на рис.1.11. Он определяется энергией сильного (ядерного) взаимодействия, обусловленного притяжением нуклонов друг к другу, и энергией кулоновского взаимодействия (электростатического отталкивания протонов).

    В результате - частица в ядре, имеющая энергиюЕ  , находится за потенциальным барьером. Вследствие ее волновых свойств есть некоторая вероятность того, что- частица окажется за пределами ядра.

    3. Туннельный эффект в p - n - переходе используется в двух классах полупроводниковых приборов:туннельных иобращенных диодах . Особенностью туннельных диодов является наличие падающего участка на прямой ветви вольт-амперной характеристики - участка с отрицательным дифференциальным сопротивлением. В обращенных диодах наиболее интересным является то,что при обратном включении сопротивление оказывается меньше, чем при обратном включении. Подробнее о туннельных и обращенных диодах см. раздел 5.6.

    > Квантовое туннелирование

    Изучите квантовый туннельный эффект . Узнайте, при каких условиях возникает эффект туннельного зрения, формула Шредингера, теория вероятности, орбитали атомов.

    Если объекту не хватает энергии, чтобы пробиться сквозь барьер, то он способен туннелироваться через воображаемое пространство с другой стороны.

    Задача обучения

    • Выявить факторы, влияющие на вероятность туннелирования.

    Основные пункты

    • Квантовое туннелирование используют для любых объектов перед барьером. Но в макроскопических целях вероятность возникновения небольшая.
    • Туннельный эффект возникает из-за мнимой компонентной формулы Шредингера. Так как она присутствует в волновой функции любого объекта, то может существовать в воображаемом пространстве.
    • Туннелирование сокращается с ростом массы тела и увеличением разрыва между энергиями объекта и барьера.

    Термин

    • Туннелирование – квантово-механическое прохождение частички сквозь энергетический барьер.

    Как возникает туннельный эффект? Вообразите, что вы бросаете мяч, но он исчезает мгновенно, так и не коснувшись стены, и появляется с другой стороны. Стена здесь останется целой. Удивительно, но существует конечная вероятность того, что это событие осуществится. Явление именуют квантовым туннельным эффектом.

    На макроскопическом уровне возможность туннелирования остается незначительной, но она постоянно наблюдается в наномасштабах. Давайте посмотрим на атом с р-орбиталью. Между двумя долями расположена узловая плоскость. Есть вероятность, что в любой ее точке можно найти электрон. Однако электроны переходят от одной доли к другой путем квантового туннелирования. Им просто нельзя находиться в узловой области, и они путешествуют по воображаемому пространству.

    Красная и синяя доли показывают объемы, где присутствует 90% вероятность обнаружения электрона в любой временной промежуток, если орбитальная зона занята

    Временное пространство не выступает реальным, но оно активно участвует в формуле Шредингера:

    Вся материя располагает волновым компонентом и может существовать в мнимом пространстве. Понять разницу вероятности туннелирования поможет комбинация массы, энергии и высоты энергии объекта.

    Когда объект подходит к барьеру, волновая функция меняется от синусоидальной до экспоненциально сокращающейся. Формула Шредингера:

    Вероятность туннелирования становится меньше при росте массы объекта и возрастания разрыва между энергиями. Волновая функция никогда не приближается к 0, поэтому туннелирование так часто встречается в наномасштабах.

    Туннельный эффект - удивительное явление, совершенно невозможное с позиций классической физики. Но в загадочном и таинственном квантовом мире действуют несколько иные законы взаимодействия материи и энергии. Туннельный эффект представляет собой процесс преодоления некоего потенциального барьера при том условии, что ее энергия меньше высоты преграды. Это явление имеет исключительно квантовую природу и полностью противоречит всем законам и догмам классической механики. Тем удивительнее мир, в котором мы живем.

    Понять, что же такое квантовый туннельный эффект, лучше всего можно на примере мяча для гольфа, запущенного с некоторой силой в лунку. В любую единицу времени полная энергия мяча находится в противодействии с потенциальной силой гравитации. Если предположить, что его уступает силе гравитации, то указанный предмет не сможет самостоятельно покинуть лунку. Но это в соответствии с законами классической физики. Чтобы преодолеть край ямки и продолжить свой путь, ему обязательно понадобится дополнительный кинетический импульс. Так вещал великий Ньютон.

    В квантовом мире дело обстоит несколько иначе. А теперь допустим, что в лунке оказалась квантовая частица. В таком случае речь уже будет идти не о реальном физическом углублении в земле, а о том, что физики условно называют «потенциальной ямой». У такой величины есть и аналог физического борта - энергетический барьер. Здесь ситуация меняется самым кардинальным образом. Чтобы состоялся так называемый квантовый переход и частица оказалась за пределами барьера, необходимо уже другое условие.

    Если напряженность внешнего энергетического поля меньше частицы, тогда у нее есть реальный шанс независимо от его высоты. Даже если у нее недостаточно кинетической энергии в понимании ньютоновской физики. Это и есть тот самый туннельный эффект. Работает он следующим образом. свойственно описание любой частицы не с помощью каких-то физических величин, а посредством волновой функции, связанной с вероятностью расположения частицы в определенной точке пространства в каждую конкретную единицу времени.

    При столкновении частицы с неким барьером с помощью уравнения Шредингера можно просчитать вероятность преодоления этой преграды. Так как барьер не только энергетически поглощает но и гасит ее по экспоненте. Иначе говоря, в квантовом мире не существует непреодолимых преград, а есть только дополнительные условия, при которых частица может оказаться за пределами этих барьеров. Различные препятствия, конечно, мешают движению частиц, но отнюдь не являются твердыми непроницаемыми границами. Условно выражаясь, это некое пограничье двух миров - физического и энергетического.

    Туннельный эффект имеет свой аналог в ядерной физике - автоионизацию атома в мощном электрическом поле. Примерами проявления туннелирования изобилует и физика твердого тела. Сюда можно отнести автоэлектронную эмиссию, миграцию а также эффекты, которые возникают на контакте двух сверхпроводников, разделенных тонкой диэлектрической пленкой. Исключительную роль играет туннелирование в реализации многочисленных химических процессов в условиях низких и криогенных температур.

    Самым ярким представителем квантовых размерных эффектов является туннельный эффект – чисто квантовое явление, сыгравшее важную роль в развитии современной электронике и приборостроении. Феномен туннелирования был открыт в 1927 г. нашим соотечественником Г. А. Гамов, который впервые получил решения уравнения Шрёдингера, описывающие возможность преодоления частицей потенциального барьера, даже если её энергия меньше высоты барьера. Найденные решения помогли понять многие экспериментальные данные, которые невозможно было понять в рамках представлений классической физики.


    Впервые в физике туннельный эффект был использован для объяснения радиоактивного - распада атомных ядер, например:

    Дело в том, что - частица – ядро атома гелия - не имеет достаточной энергии для того, чтобы покинуть нестабильное ядро. На этом пути - частице необходимо преодолеть огромный (28 МэВ), но достаточно узкий (10 -12 см – радиус ядра) потенциальный барьер. Советский учёный Г. Гамов (1927) показал, что распад атомного ядра в таком случае становится возможным именно за счёт тунелирования переноса - частицы. Благодаря туннельному эффекту происходит также холодная эмиссия электронов из металлов и многие другие явления. Многие считают, что за грандиозность результатов его работ, ставших основополагающими для многих наук, Г.А. Гамов должен был быть удостоен нескольких Нобелевских премий. Лишь спустя тридцать лет после открытия Г. А. Гамова появились первые приборы на основе туннельного эффекта – туннельные диоды, транзисторы, датчики, термометры для измерения сверхнизких температур, и, наконец, сканирующие туннельные микроскопы, положившие начало современным исследованиям наноструктур. Туннельный эффект представляет собой процесс преодоления микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелированный неизменной) меньше высоты барьера. Туннельный эффект – явление исключительно квантовой природы, которое не возможно было объяснить в рамках классических представлений. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда с точки зрения геометрической оптики, происходит полное внутреннее отражение. В общем случае, туннельный эффект представляет собой процесс преодоления микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. В классической механике движение происходит при условии, что полная энергия частицы больше, чем её потенциальная энергия , т.е. имеет место неравенство:


    Поскольку полная энергия равна сумме кинетической и потенциальной энергий:

    и кинетическая энергия больше нуля , то соответственно разность полной и потенциальной энергий, также будет больше нуля:

    и таким образом будет выполняться условие вида:

    Необходимо отметить, что задача о движении частицы в потенциальном ящике удовлетворяет данному условию, поскольку внутри ящика потенциальная энергия равна нулю . Однако в квантовой механике движение возможно и при условии, когда полная энергия меньше потенциальной . Такие задачи объединяют общим названием – потенциальные барьеры. Рассмотрим потенциальный барьер прямоугольной формы. Пусть в области I значение потенциала равно нулю, . В области II значение потенциальной энергии равно определяется высотой барьера и таким образом . В области III значение потенциальной энергии равно нулю, . Обозначим волновые функции для областей: для области I, для области II и для области III. В данной задаче нас будет интересовать случай, когда полная энергия частицы меньше высоты потенциального барьера , т.е. при условии что .

    Рис.8. Прохождение частицы через потенциальный барьер

    Для каждой из трёх областей запишем уравнение Шрёдингера, приведём его к стандартному виду и опишем его общие решения. Рассмотрим движение частицы в области I. Обозначим волновую функцию частицы в этом случае . Как и в случае свободного движения частицы, соответствующее уравнение Шрёдингера запишется в виде:

    откуда следует, что:


    общее решение уравнения Шрёдингера для области I, может быть записано в виде:

    первую часть функции можно интерпретировать как падающую на потенциальный барьер волну (движение частицы слева направо в области I). Коэффициенты и называют амплитудами соответственно падающей и отражённой волны. Они определяют вероятность прохождения волны через потенциальный барьер, а также вероятность её отражения от барьера. Поскольку коэффициенты разложения в выражении для волновой функции связаны с интенсивностью пучка частиц движущихся к барьеру или отражённых от него, тогда соответственно принимая амплитуду падающей волны , будем иметь:

    Рассмотрим теперь движение частицы в области II. В условиях данной задачи, физический интерес для нас будет представлять случай, когда полная энергия частицы меньше высоты потенциального барьера, что отвечает выполнению условия вида:

    поскольку для области II:

    т.е. значения потенциальной энергии частицы определяется высотой барьера – размером области:

    тогда уравнение Шрёдингера для области II будет иметь вид:

    откуда следует, что:

    Туннельный эффект
    Tunneling effect

    Туннельный эффект (туннелирование) – прохождение частицы (или системы) сквозь область пространства, пребывание в которой запрещено классической механикой. Наиболее известный пример такого процесса – прохождение частицы сквозь потенциальный барьер, когда её энергия Е меньше высоты барьера U 0 . В классической физике частица не может оказаться в области такого барьера и тем более пройти сквозь неё, так как это нарушает закон сохранения энергии. Однако в квантовой физике ситуация принципиально другая. Квантовая частица не движется по какой-либо определенной траектории. Поэтому можно лишь говорить о вероятности нахождения частицы в определенной области пространства ΔрΔх > ћ. При этом ни потенциальная, ни кинетическая энергии не имеют определенных значений в соответствии с принципом неопределенности. Допускается отклонение от классической энергии Е на величину ΔЕ в течение интервалов времени t, даваемых соотношением неопределённостей ΔЕΔt > ћ (ћ = h/2π, где h – постоянная Планка).

    Возможность прохождения частицы сквозь потенциальный барьер обусловлена требованием непрерывной волновой функции на стенках потенциального барьера. Вероятность обнаружения частицы справа и слева связаны между собой соотношением, зависящим от разности E - U(x) в области потенциального барьера и от ширины барьера x 1 - x 2 при данной энергии.

    С увеличением высоты и ширины барьера вероятность туннельного эффекта экспоненциально спадает. Вероятность туннельного эффекта также быстро убывает с увеличением массы частицы.
    Проникновение сквозь барьер носит вероятностный характер. Частица с Е < U 0 , натолкнувшись на барьер, может либо пройти сквозь него, либо отразиться. Суммарная вероятность этих двух возможностей равна 1. Если на барьер падает поток частиц с Е < U 0 , то часть этого потока будет просачиваться сквозь барьер, а часть – отражаться. Туннельное прохождение частицы через потенциальный барьер лежит в основе многих явлений ядерной и атомной физики: альфа-распад, холодная эмиссия электронов из металлов, явления в контактном слое двух полупроводников и т.д.