Автомобильный портал
Поиск по сайту

Физики заявили о возможности заглянуть за горизонт событий черной дыры. Стивен Хокинг поставил под сомнение существование горизонта событий у чёрных дыр Горизонт событий черной дыры для чайников

5 декабря 2017 в 10:00

Спросите Итана: как должен выглядеть горизонт событий чёрной дыры?

  • Научно-популярное ,
  • Астрономия
  • Перевод

Изображение чёрной дыры. Несмотря на её тёмный цвет, считается, что все чёрные дыры были сформированы из обычной материи, но подобные иллюстрации не совсем точны

В апреле 2017 телескопы всего мира одновременно собрали данные по центральной чёрной дыре Млечного Пути. Из всех известных во вселенной ЧД та, что находится в центре Галактики - Стрелец A* - особенная. С нашей точки зрения её горизонт событий крупнейший из всех доступных нам ЧД. Он настолько большой, что телескопы, расположенные в разных местах Земли, должны были бы его увидеть, если бы посмотрели на него все одновременно. И хотя на комбинирование и анализ данных, полученных с разных телескопов, уйдут месяцы, к концу 2017 года мы должны получить наше первое изображение горизонта событий. Так как он должен выглядеть? Такой вопрос задаёт один из наших читателей, запутавшийся в иллюстрациях:

Разве горизонт событий не должен полностью окружать чёрную дыру на манер яичной скорлупы? Все художники рисуют чёрные дыры в виде разрезанных яиц, сваренных вкрутую. Почему горизонт событий не окружает чёрную дыру полностью?

Конечно, в интернете можно найти иллюстрации разного рода. Но какие из них правильные?



Рисунок с простым чёрным кругом и кольцом вокруг него - чрезмерно упрощённое изображние горизонта ЧД

Самый старый вид иллюстраций - простой чёрный диск, закрывающий собой весь свет позади него. Это имеет смысл, если вспомнить, что собой представляет ЧД: по сути, это собранная в одном месте масса настолько большой величины и настолько компактная, что скорость убегания с её поверхности превышает скорость света. Поскольку ничто не может двигаться так быстро, даже передача взаимодействий между частицами внутри ЧД, внутри ЧД схлопывается до сингулярности, а вокруг ЧД образуется горизонт событий. Из этого сферического участка космоса свет не может убежать, поэтому он и должен выглядеть с любой перспективы, как чёрный круг, наложенный на фон Вселенной.


ЧД - не просто масса над изолированным фоном, она оказывает гравитационные эффекты, растягивающие, увеличивающие и искажающие свет из-за гравитационного линзирования.

Но это ещё не вся история. Из-за гравитации ЧД увеличивают и искажают идущий с обратной стороны свет из-за эффекта гравитационного линзирования. Существует более точные и детальные иллюстрации внешнего вида ЧД, и у неё даже есть горизонт событий, размер которого правильно сопоставлен с кривизной пространства согласно ОТО.

К сожалению, и эти иллюстрации не лишены недостатков: они не учитывают материал, находящийся перед ЧД и аккреционный диск вокруг ЧД. Некоторые изображения включают и это.


Изображение активной ЧД, занятой аккрецией материи и ускорением её части в виде двух перпендикулярных струй, может описать ЧД в центре нашей Галактики правильно с многих точек зрения.

Из-за огромных гравитационных эффектов чёрные дыры формируют аккреционные диски в присутствии других источников материи. Астероиды, газовые облака, целые звёзды могут быть разорваны на части приливными силами, исходящими от таких массивных объектов, как чёрные дыры. Из-за сохранения углового момента и из-за столкновений между различными падающими в ЧД частицами, вокруг неё появиялется дискообразный объект, который разогревается и излучает. Во внутренних регионах частицы периодически падают в ЧД, что увеличивает её массу, а материал, находящийся перед ней, закрывает часть сферы, которую вы бы иначе видели.

Но сам по себе горизонт событий непрозрачен, и материю за ним вы видеть не должны.


У чёрной дыры в фильме Interstellar достаточно точно показан горизонт событий для особого класса вращающихся ЧД

Вас может удивить, что в голливудском фильме Interstellar ЧД изображена точнее, чем на многих профессиональных изображениях, созданных в НАСА или для него. Но даже среди профессионалов полно неправильных представлений о ЧД. ЧД не засасывают материю внутрь, а лишь оказывают гравитационное воздействие. ЧД не раздирают предметы из-за какой-то дополнительной силы - это делают простые приливные силы, когда одна часть падающего объекта оказывается ближе к центру, чем другая. И, что самое важное, ЧД редко существуют в «голом» состоянии, и часто находятся вблизи другой материи, как та, что существует в центре нашей Галактики.


Композитное изображение ЧД Стрелец А* в центре нашей Галактики, составленное из рентгеновских и инфракрасных лучей. Она обладает массой в 4 миллиона солнечных, и окружена горячим газом, излучающим в рентгеновском диапазоне

Памятуя обо всём этом, вспомним, что же это за изображения варёных яиц? Помните, что саму ЧД изобразить нельзя, поскольку она не испускает свет. Мы можем только наблюдать в определённом диапазоне длин волн и видеть сочетание света, обходящего ЧД сзади, изгибающегося вокруг и перед ней. И получающийся сигнал действительно будет напоминать варёное вкрутую яйцо, разрезанное пополам.


Некоторые из возможных сигналов горизонта событий ЧД, полученные в симуляциях проекта "Телескоп горизонта событий "

Всё дело в том, что именно мы фотографируем. Мы не можем наблюдать в рентгеновском диапазоне, ибо таких фотонов слишком мало. Мы не можем наблюдать в видимом свете, поскольку центр галактики для него непрозрачен. И мы не можем наблюдать в инфракрасном свете, поскольку атмосфера блокирует такие лучи. Но мы можем наблюдать в радиодиапазоне, и делать это по всему миру, одновременно, чтобы получить наилучшее из возможных разрешений.


Части «Телескопа горизонта событий» из одного полушария

Угловой размер ЧД в центре Галактики равен примерно 37 угловых микросекунд, а разрешение телескопа равно 15 угловых микросекунд, поэтому у нас должно получиться его увидеть! Большая часть радиочастотного излучения исходит из заряженных частиц материи, ускоряющихся вокруг ЧД. Мы не знаем, как будет ориентирован диск, будет ли там несколько дисков, будет ли это больше похоже на рой пчёл или на компактный диск. Мы также не знаем, предпочтёт ли он одну «сторону» ЧД, с нашей точки зрения, другой.


Пять различных симуляций в ОТО с использованием магнитогидродинамической модели аккреционного диска ЧД, и то, как будет выглядеть полученный сигнал

Мы ожидаем найти реальный горизонт событий, с определённым размером, блокирующий весь идущий из-за него свет. Мы также ожидаем наличие какого-либо сигнала, расположенного перед ним, неровность этого сигнала из-за беспорядка вокруг ЧД, и что ориентация диска относительно ЧД определит, что именно вы сможем увидеть.

Одна часть будет ярче, когда диск вращается в нашу сторону. Другая сторона тусклее, когда диск вращается от нас. Контур горизонта событий также может быть видимым из-за гравитационного линзирования. Что ещё важнее, расположение диска к нам ребром или плоскостью очень сильно будет влиять на характер полученного сигнала, как видно в первом и третьем квадратах рисунка ниже.


Расположение диска к нам ребром (два правых квадрата) или плоскостью (два левых квадрата) очень сильно будет влиять на то, какую ЧД мы увидим

Мы можем проверить и другие эффекты, а именно:

Обладает ли ЧД размером, предсказанным ОТО,
круглый ли горизонт событий (как предсказано), или вытянутый, или сплющенный у полюсов,
простирается ли радиоизлучение дальше чем мы думаем,

Или есть ещё какие-то отклонения от ожидаемого поведения. Это новая ступень физики, и мы находимся на грани её прямой проверки. Одно ясно: неважно, что увидит «Телескоп горизонта событий», мы обязательно узнаем что-то новое и прекрасное об одних из самых экстремальных объектов и условий во Вселенной!

Чёрные дыры привлекают внимание физиков и астрономов поскольку представляют собой уникальную естественную лабораторию для изучения гравитационных эффектов, которые мы не можем увидеть на Земле. Многие учёные занимались на протяжении столетия изучением погибших звёзд, коими являются чёрные дыры. Но самым известным из них стал британский космолог из Кэмбриджского университета Стивен Хокинг (Stephen Hawking).

Будучи сторонником квантовой механики, Хокинг изучает чёрные дыры с точки зрения именно квантовых моделей, пытаясь с их помощью объяснить классико-механические явления и проявления Теории относительности Эйнштейна.

Изучение чёрных дыр в первую очередь упирается в понятие горизонта событий — некой гипотетической сферы вокруг точки гравитационной сингулярности , за пределы которой ничто не может выйти. И под "ничто" космологи подразумевают и материю, и энергию, и даже информацию.

О последнем стоит упомянуть подробнее. В 2012 году физик-теоретик Джо Полчински (Joe Polchinski) из Института теоретической физики в Санта-Барбаре подробно описал парадокс "огненной стены" и феномен исчезновения информации в чёрной дыре , что невозможно в принципе, согласно законам квантовой механики. В ответ на это Хокинг развил тему, выложив свою научную статью под причудливым названием "Сохранение информации и прогноз погоды для чёрных дыр" на сайте препринтов arXiv.org.

В своей новой работе космолог ставит под большое сомнение само существование горизонта событий. Вместо этого он вводит новый термин — "видимый горизонт" (apparent horizon), подразумевая, что мнимая сфера лишь временно удерживает материю и энергию, но в конечном счёте выпускает их, хоть и в искажённом виде.

"Согласно классической теории, из горизонта событий выхода нет. Но квантовая теория допускает выход энергии и информации из чёрной дыры. Правда, к сожалению, кроется лишь в единой теории, которая объединяла бы квантовую механику и теорию гравитации, а мы, учёные, никак не можем её сформулировать", — комментирует Хокинг свою идею.

Чёрные дыры вообще могут не иметь горизонта событий

Физики любят рассказывать о чёрных дырах с помощью следующего мысленного эксперимента: что было бы с космонавтом, если бы он случайно приблизился к чёрной дыре на критическое расстояние? Сторонники классической механики говорят, что он бы незаметно прошёл через горизонт событий, после чего бы его стало засасывать внутрь, при этом несчастного бы растянуло в длинную макаронину, атом за атомом. А затем он бы оказался упакован в бесконечно плотное ядро чёрной дыры — точку сингулярности.

Полчински обнаружил, что квантовая механика выдаёт совершенно другую версию развития событий. Горизонт событий, по квантово-механическим моделям, должен представлять собой крайне высокоэнергетическую зону, нечто вроде огненной стены, которая поджарила бы горе-космонавта до хрустящей корочки.

Но такой сценарий возмутил бы Эйнштейна: согласно Общей теории относительности, гипотетический наблюдатель будет одинаково воспринимать законы физики как в свободном полёте через галактику, так и при падении в чёрную дыру. Хокинг предложил третий вариант, который математически прост и не "удивляет" квантовую механику или Общую теорию относительности.

Идея проста: по Хокингу, горизонта событий и вовсе не существует. Квантовые эффекты, возникающие вблизи чёрной дыры, вызывают резкие пространственно-временные флуктуации, и эти колебания настолько велики, что строгая граница, вроде горизонта событий, просто не может возникнуть.

Так называемый "видимый горизонт", альтернатива горизонту событий, представляет собой некую поверхность, которая сдерживает лучи света, пытающиеся покинуть чёрную дыру. Это явление в определённом смысле совпадает с горизонтом событий, однако между двумя понятиями всё же есть разница. Если и та, и другая граница, не будет выпускать за свои пределы свет, то горизонт событий будет со временем сокращаться, а видимый горизонт — разбухать.


По законам классической механики, космонавта, приблизившегося к чёрной дыре, растянет как макаронину, а затем атом за атомом упакует в точку гравитационной сингулярности

Последнее очевидно, чем больше материи поглотит чёрная дыра, тем крупнее она станет и, соответственно, расширятся её границы. А оседание горизонта событий Хокинг объяснил ещё в 1974 году, когда ввёл понятие излучение Хокинга : некоторые частицы всё же покидают иногда пределы погибшей звезды, но удаётся это преимущественно фотонам. А чем меньше частиц содержит чёрная дыра, тем уже её горизонт событий.

Коллеги Хокинга, не принимавшие участия в его работе, отмечают, что такими идеями космолог опровергает существование чёрных дыр как таковых. Во-первых, по своей природе видимый горизонт может в один прекрасный день исчезнуть, и всё, что было когда-либо захвачено чёрной дырой, выйдет в открытый космос, пусть и не в первоначальной форме.

А во-вторых, отсутствие горизонта событий ставит под сомнение наличие гравитационной сингулярности в центре чёрной дыры. Вместо классических представлений о судьбе космонавта или любого предмета у чёрной дыры, материя будет лишь временно храниться за видимым горизонтом и постепенно двигаться к центру под действием гравитации ядра. Но ничто не окажется "упакованным" в точку сингулярности, а информация о материи и вовсе покинет пределы чёрной дыры вместе с излучением Хокинга, хотя и в крайне искажённом виде.

Полчински, ознакомившись со статьёй Хокинга, выразил сомнение по поводу существования в природе чёрных дыр без горизонта событий. Флуктуации пространства-времени, которые требуются для стирания этой границы, должны быть слишком мощными, а ничего подобного астрофизики пока не наблюдали. Эйнштейн описывал чёрные дыры почти как обычные источники мощного гравитационного поля, и в этом смысле его теория намного проще, хоть и не учитывает многих других физических аспектов.

МОСКВА, 27 мая - РИА Новости. Немецкие и итальянские космологи заявляют, что им удалось найти способ изучить то, что происходит внутри черной дыры, и понять, как устроена ее внутренняя структура, говорится в статье, опубликованной в журнале Physical Review Letters.

Черные дыры, возникающие в результате гравитационного коллапса массивных звезд, обладают столь сильным тяготением, что его нельзя преодолеть, не превысив скорость света. Никакие объекты или излучение не могут вырваться из-за границы воздействия черной дыры, так называемого горизонта событий.

То, что происходит за "горизонтом событий", остается тайной и предметом споров среди физиков. Большинство ученых считает, что мы в принципе не можем заглянуть внутрь черной дыры и изучить ее структуру, так как это приведет к крайне неприятным последствиям - в таком случае мы не сможем "примирить" между собой теорию относительности Эйнштейна и квантовую механику. Еще большие споры вызывает то, как выглядит и как меняется "горизонт событий". Ученые называют число его возможных обликов "энтропией", а отдельные варианты его облика — микросостояниями, и спорят о том, можно ли их просчитать.

Лоренцо Синдони (Lorenzo Sindoni) из Института гравитационной физики в Мюленберге (Германия) и его коллеги из Италии заявляют, что мы все же можем просчитать те микросостояния, которые возникают у горизонта событий черной дыры, используя две неортодоксальные теории, описывающие поведение материи на квантовом уровне - теорию групп полей (GFT) и петлевую квантовую гравитацию (LQG). Обе эти теории вызывают множество вопросов у физиков, в особенности тех, кто является сторонниками теории струн и связанных с ней умозрительных построений.

Ученый: черная дыра может проглотить Землю, и мы этого не заметим Черная дыра не обязательно уничтожает всю падающую на нее материю благодаря существованию "стены огня" из квантов высокой энергии у ее горизонта событий, в результате чего даже относительно крупные объекты, такие как Земля, могут в принципе быть "проглочены" ей.

Эти теории, как утверждают ученые, помогли им просчитать, как ведет себя черная дыра с точки зрения термодинамики, и получить те же самые формулы, которые были выведены Стивеном Хокингом несколько десятилетий назад при описании того, как энтропия, порождаемая черной дырой, соотносится с площадью поверхности ее горизонта событий.

Материя внутри черной дыры, как считают авторы статьи, будет вести себя как особая квантовая жидкость, поведение которой можно просчитать, зная свойства одной из квантовых частиц, из которых она сложена. Подобная природа черной дыры и связь между площадью ее горизонта событий и энтропией, по мнению Синдони, является серьезным аргументом в пользу так называемых "голографических" теорий их устройства, которые гласят, что черные дыры, а возможно, и Вселенная представляют собой не трехмерные, а двумерные объекты.

  • Перевод

Изображение чёрной дыры. Несмотря на её тёмный цвет, считается, что все чёрные дыры были сформированы из обычной материи, но подобные иллюстрации не совсем точны

В апреле 2017 телескопы всего мира одновременно собрали данные по центральной чёрной дыре Млечного Пути. Из всех известных во вселенной ЧД та, что находится в центре Галактики - Стрелец A* - особенная. С нашей точки зрения её горизонт событий крупнейший из всех доступных нам ЧД. Он настолько большой, что телескопы, расположенные в разных местах Земли, должны были бы его увидеть, если бы посмотрели на него все одновременно. И хотя на комбинирование и анализ данных, полученных с разных телескопов, уйдут месяцы, к концу 2017 года мы должны получить наше первое изображение горизонта событий. Так как он должен выглядеть? Такой вопрос задаёт один из наших читателей, запутавшийся в иллюстрациях:

Разве горизонт событий не должен полностью окружать чёрную дыру на манер яичной скорлупы? Все художники рисуют чёрные дыры в виде разрезанных яиц, сваренных вкрутую. Почему горизонт событий не окружает чёрную дыру полностью?

Конечно, в интернете можно найти иллюстрации разного рода. Но какие из них правильные?



Рисунок с простым чёрным кругом и кольцом вокруг него - чрезмерно упрощённое изображние горизонта ЧД

Самый старый вид иллюстраций - простой чёрный диск, закрывающий собой весь свет позади него. Это имеет смысл, если вспомнить, что собой представляет ЧД: по сути, это собранная в одном месте масса настолько большой величины и настолько компактная, что скорость убегания с её поверхности превышает скорость света. Поскольку ничто не может двигаться так быстро, даже передача взаимодействий между частицами внутри ЧД, внутри ЧД схлопывается до сингулярности, а вокруг ЧД образуется горизонт событий. Из этого сферического участка космоса свет не может убежать, поэтому он и должен выглядеть с любой перспективы, как чёрный круг, наложенный на фон Вселенной.


ЧД - не просто масса над изолированным фоном, она оказывает гравитационные эффекты, растягивающие, увеличивающие и искажающие свет из-за гравитационного линзирования.

Но это ещё не вся история. Из-за гравитации ЧД увеличивают и искажают идущий с обратной стороны свет из-за эффекта гравитационного линзирования. Существует более точные и детальные иллюстрации внешнего вида ЧД, и у неё даже есть горизонт событий, размер которого правильно сопоставлен с кривизной пространства согласно ОТО.

К сожалению, и эти иллюстрации не лишены недостатков: они не учитывают материал, находящийся перед ЧД и аккреционный диск вокруг ЧД. Некоторые изображения включают и это.


Изображение активной ЧД, занятой аккрецией материи и ускорением её части в виде двух перпендикулярных струй, может описать ЧД в центре нашей Галактики правильно с многих точек зрения.

Из-за огромных гравитационных эффектов чёрные дыры формируют аккреционные диски в присутствии других источников материи. Астероиды, газовые облака, целые звёзды могут быть разорваны на части приливными силами, исходящими от таких массивных объектов, как чёрные дыры. Из-за сохранения углового момента и из-за столкновений между различными падающими в ЧД частицами, вокруг неё появиялется дискообразный объект, который разогревается и излучает. Во внутренних регионах частицы периодически падают в ЧД, что увеличивает её массу, а материал, находящийся перед ней, закрывает часть сферы, которую вы бы иначе видели.

Но сам по себе горизонт событий непрозрачен, и материю за ним вы видеть не должны.


У чёрной дыры в фильме Interstellar достаточно точно показан горизонт событий для особого класса вращающихся ЧД

Вас может удивить, что в голливудском фильме Interstellar ЧД изображена точнее, чем на многих профессиональных изображениях, созданных в НАСА или для него. Но даже среди профессионалов полно неправильных представлений о ЧД. ЧД не засасывают материю внутрь, а лишь оказывают гравитационное воздействие. ЧД не раздирают предметы из-за какой-то дополнительной силы - это делают простые приливные силы, когда одна часть падающего объекта оказывается ближе к центру, чем другая. И, что самое важное, ЧД редко существуют в «голом» состоянии, и часто находятся вблизи другой материи, как та, что существует в центре нашей Галактики.


Композитное изображение ЧД Стрелец А* в центре нашей Галактики, составленное из рентгеновских и инфракрасных лучей. Она обладает массой в 4 миллиона солнечных, и окружена горячим газом, излучающим в рентгеновском диапазоне

Памятуя обо всём этом, вспомним, что же это за изображения варёных яиц? Помните, что саму ЧД изобразить нельзя, поскольку она не испускает свет. Мы можем только наблюдать в определённом диапазоне длин волн и видеть сочетание света, обходящего ЧД сзади, изгибающегося вокруг и перед ней. И получающийся сигнал действительно будет напоминать варёное вкрутую яйцо, разрезанное пополам.


Некоторые из возможных сигналов горизонта событий ЧД, полученные в симуляциях проекта "Телескоп горизонта событий "

Всё дело в том, что именно мы фотографируем. Мы не можем наблюдать в рентгеновском диапазоне, ибо таких фотонов слишком мало. Мы не можем наблюдать в видимом свете, поскольку центр галактики для него непрозрачен. И мы не можем наблюдать в инфракрасном свете, поскольку атмосфера блокирует такие лучи. Но мы можем наблюдать в радиодиапазоне, и делать это по всему миру, одновременно, чтобы получить наилучшее из возможных разрешений.


Части «Телескопа горизонта событий» из одного полушария

Угловой размер ЧД в центре Галактики равен примерно 37 угловых микросекунд, а разрешение телескопа равно 15 угловых микросекунд, поэтому у нас должно получиться его увидеть! Большая часть радиочастотного излучения исходит из заряженных частиц материи, ускоряющихся вокруг ЧД. Мы не знаем, как будет ориентирован диск, будет ли там несколько дисков, будет ли это больше похоже на рой пчёл или на компактный диск. Мы также не знаем, предпочтёт ли он одну «сторону» ЧД, с нашей точки зрения, другой.


Пять различных симуляций в ОТО с использованием магнитогидродинамической модели аккреционного диска ЧД, и то, как будет выглядеть полученный сигнал

Мы ожидаем найти реальный горизонт событий, с определённым размером, блокирующий весь идущий из-за него свет. Мы также ожидаем наличие какого-либо сигнала, расположенного перед ним, неровность этого сигнала из-за беспорядка вокруг ЧД, и что ориентация диска относительно ЧД определит, что именно вы сможем увидеть.

Одна часть будет ярче, когда диск вращается в нашу сторону. Другая сторона тусклее, когда диск вращается от нас. Контур горизонта событий также может быть видимым из-за гравитационного линзирования. Что ещё важнее, расположение диска к нам ребром или плоскостью очень сильно будет влиять на характер полученного сигнала, как видно в первом и третьем квадратах рисунка ниже.


Расположение диска к нам ребром (два правых квадрата) или плоскостью (два левых квадрата) очень сильно будет влиять на то, какую ЧД мы увидим

Мы можем проверить и другие эффекты, а именно:

Обладает ли ЧД размером, предсказанным ОТО,
круглый ли горизонт событий (как предсказано), или вытянутый, или сплющенный у полюсов,
простирается ли радиоизлучение дальше чем мы думаем,

Или есть ещё какие-то отклонения от ожидаемого поведения. Это новая ступень физики, и мы находимся на грани её прямой проверки. Одно ясно: неважно, что увидит «Телескоп горизонта событий», мы обязательно узнаем что-то новое и прекрасное об одних из самых экстремальных объектов и условий во Вселенной!

Изучением черных дыр всерьез физики занялись не так давно - хотя сама концепция их существования появилась еще в позапрошлом веке. Но идея присутствия где-то в космосе таких объектов казалась настолько фантастической и недоказуемой, что практически не рассматривалась всерьез. В новом выпуске рубрики «Просто о сложном» - рассказ об истории открытия «застывших звезд» и о том, что происходит с пространством и временем на границах черной дыры.

Долгая история неверия

В 1783 году священник из английской деревни Торнхилл Джон Митчелл представил в журнал «Философские труды Лондонского Королевского общества» свою статью. В ней он писал, что достаточно массивная и компактная звезда будет иметь столь сильное гравитационное поле, что свет не сможет уйти от нее далеко - он будет затянут обратно за счет гравитационного притяжения. Митчелл считал, что таких объектов в космосе может быть очень много, но увидеть их невозможно - так как их свет поглощается ими же. Тем не менее теоретически их гравитационное притяжение можно обнаружить. Статья не вызвала ажиотажа в научном сообществе и прошла практически незамеченной.

Спустя несколько лет французский ученый Пьер-Симон Лаплас, незнакомый с работой Митчелла, выдвинул схожую гипотезу. Он опубликовал ее в своем труде «Система мира», однако после второго издания теория из книги исчезла - по всей видимости, Лаплас решил, что о такой дурацкой идее и говорить не стоит.

Из небольших звезд получаются белые карлики, объекты с плотностью в сотни тонн на кубический сантиметр. В космосе их обнаружено довольно много, и наше Солнце со временем пополнит их ряды.

А вот в XIX веке ученым уже не могла прийти в голову мысль о невидимых звездах. Все дело в том, что ньютоновское убеждение относительно того, что свет состоит из частиц, вышло из моды. Ученые пришли к выводу, что концепция, согласно которой свет - это волна, лучше описывает явления окружающего мира. О том, как гравитация действует на волны, ничего известно не было, стало быть, и рассуждения о небесных объектах, «затягивающих» собственный свет, пришлось забыть.

Вновь вспомнили о них только в XX веке. В 1916 году, практически сразу после публикации Эйнштейном общей теории относительности, Карл Шварцшильд описал «застывшую звезду», как тогда называли такие объекты, не рассматривая процесс ее зарождения, а в 1939 этот недостающий элемент в теорию добавили Роберт Оппенгеймер и Хартланд Снайдер. И только 1969 году американский физик Джон Уилер придумал термин «черная дыра» (Уилер вообще был романтиком, и второй придуманный им термин, «кротовая нора», еще более любим фантастами).

Загробная жизнь звезды

Жизненный цикл звезды чем-то похож на человеческий - она рождается и умирает. Вначале огромное облако газа (преимущественно водорода) в космосе начинает сжиматься под воздействием собственной гравитации, его молекулы все чаще сталкиваются друг с другом, и их скорости увеличиваются. Газ разогревается, и при определенной температуре возникает реакция термоядерного синтеза, в результате которой образуется гелий. В ходе реакции выделяется тепло и излучается свет. Так возникает звезда. Тепло создает дополнительное давление, которое уравновешивает гравитационное притяжение, и звезда перестает сжиматься - в стабильном состоянии она может существовать более миллиона лет. Но рано или поздно запасы реагирующего водорода у звезды иссякают, и она начинает остывать и сжиматься.

Тут сравнение с человеческой жизнью заканчивается, потому что дальнейшая судьба светила зависит от его массы. Из небольших звезд получаются белые карлики, объекты с плотностью в сотни тонн на кубический сантиметр. В космосе их обнаружено довольно много, и наше Солнце со временем пополнит их ряды. Из более крупных светил образуются нейтронные звезды. Их размер куда меньше, чем у белых карликов, зато плотность составляет сотни миллионов тонн на кубический сантиметр.

И, наконец, если масса звезды достаточно велика, то образующаяся нейтронная звезда под воздействием гравитации сжимается все сильнее и сильнее, пока не станет черной дырой.

Выхода нет

Одним из важнейших достижений Эйнштейна было открытие природы гравитации. Ученый показал, что она, по сути, является искривлением пространства. Под воздействием массивных объектов оно «проминается», как натянутая эластичная ткань, на которую положили тяжелый предмет. Продолжая это сравнение, можно сказать, что точно так же в виде тяжелого шара можно представить и Солнце, а Земля, будучи значительно более мелким шариком, не притягивается к нему, а всего лишь вращается в получившейся воронке (с той только разницей, что настоящий шарик со временем скатился бы вниз).

В самой же черной дыре искривление пространства-времени становится бесконечным - такое состояние физики называют сингулярностью, и в нем нет ни пространства, ни времени в нашем понимании.

Так же можно представить и рождение черной дыры - шар на натянутой эластичной ткани становится все более маленьким и плотным, и ткань все сильнее прогибается под его весом, пока наконец он не становится настолько маленьким, что она просто смыкается над ним и он пропадает из поля зрения. Примерно так происходит и в реальности: пространство-время вокруг звезды свертывается, и она пропадает из Вселенной, оставляя в ней лишь сильно искривленную область пространства-времени. В самой же черной дыре искривление пространства-времени становится бесконечным - такое состояние физики называют сингулярностью, и в нем нет ни пространства, ни времени в нашем понимании.

Из-за происходящего искривления лучи света, идущие от звезды, меняют свои траектории. Если представить себе эти лучи как конусы, вершина которых - у звезды, а «подошва» - это круг расходящегося света, то можно сказать, что в процессе коллапса эти конусы постепенно все больше наклоняются внутрь, к звезде. Наблюдателю, смотрящему на этот процесс, будет казаться, что свечение становится все более тусклым и красным (это потому что красный свет имеет наибольшую длину волны). В конце концов искривление (то есть гравитационное поле) станет настолько сильным, что ни один луч света не сможет выйти наружу. Согласно теории относительности, ничто не может двигаться быстрее света, и это означает, что начиная с этого момента ничто не может выбраться за пределы этого гравитационного поля. Эту область пространства, из которой нет выхода, и называют черной дырой. Ее граница определяется по траектории тех световых лучей, которые первыми потеряли возможность выйти наружу. Она называется горизонтом событий черной дыры - так же как, глядя из окна, мы не видим, что находится за горизонтом, так и условный наблюдатель не может понять, что происходит внутри границ невидимой мертвой звезды.

На самом деле все не так

Убеждение, что ничто не может покинуть черную дыру, было незыблемым до 70-х годов XX века. А в 1974 году Стивен Хокинг предположил, что черные дыры в результате квантовых процессов все же излучают разнообразные элементарные частицы, преимущественно фотоны. В 2010-х годах разные группы ученых в лабораторных условиях подтвердили его предположение. При этом в природе такого излучения пока не было обнаружено, как, впрочем, и самих черных дыр - Нобелевская премия за их открытие еще ждет своего счастливчика.