Автомобильный портал
Поиск по сайту

Что такое нанотехнологии: просто о сложном. Что такое нанотехнология? Под термином нанотехнологии понимают

Нанотехнолог — специалист по нанотехнологиям, учёный, который исследует материалы на молекулярном и атомарном уровне и создаёт объекты из компонентов, обладающих наноразмерами.

Приставка нано- используется при обозначении физических величин и указывает на размер, равный одной миллиардной доле какой-либо единицы. Например, одна миллиардная метра называется нанометром.

В других случаях приставка нано- означает использование мельчайших компонентов размером от 1 до 100 нанометров (нм).

Особенности профессии

Нанотехнологи создают новые материалы с чётко заданной атомарной структурой. Контролируемые манипуляции отдельными молекулами и атомами для «сборки» таких материалов - это и есть нанотехнология.

Работа с мельчайшими элементами возможна, благодаря мощным электронным микроскопам высокого разрешения. Таким, как сканирующий атомно-силовой микроскоп (АСМ), растровый электронный микроскоп (РЭМ).

К нанотехнологиям относят также разработку и создание электронных схем, основанных на элементах размером с молекулу или атом. Разработку роботов (наномашин, нанороботов) размером с молекулу. А также методы исследования таких объектов.

Таким образом, нанотехнология — междисциплинарная область, находящаяся на стыке науки (фундаментальной и прикладной) и техники.

Почему это направление стало таким актуальным в последнее время? Дело в том, что нанотехнология — это наиболее глубинное и направленное вмешательство в материю на сегодняшний день. Это качественно новый уровень точности.

Принцип создания наноматериалов (манипуляции отдельными атомами) позволяет получать такие свойства, которых невозможно добиться традиционным способом. Потому что традиционный способ (проведение химических реакций) — это работа с порциями вещества, состоящими из миллиардов атомов.

Словарь

Наноматериал — материал, состоящий из структурных элементов, размеры которых (хотя бы в одном измерении) не превышают 100 нм.

Наносистемная техника — системы и устройства, созданные на основе наноматериалов и нанотехнологий.

Наноиндустрия — производство на основе нанотехнологий.

Нанобактерии — органо-минеральные структуры (30—200 нм), способные к самостоятельному размножению.

История

Термин «нанотехнологии» первым начал использовать японский физик Норио Танигучи в 1974 году, обозначая им создание материалов с нанометровой точностью.

Однако отцом нанотехнологий считается американский учёный Ким Эрик Дрекслер, который начал свою работу в этой области в 1970-х годах (тогда он разрабатывал солнечные батареи на основе нанотехнологий). Он автор теории создания молекулярных нанороботов, нанотехнологического механосинтеза.

В 1992 году Дрекслер выступил перед комиссией Конгресса США с докладом, в котором описал, как именно нанотехнологии должны преобразить мир. По его мнению, они должны избавить мир от голода и болезней, а также уберечь от экологической катастрофы, т.к. всё, что нужно человечеству, можно сделать с помощью нанороботов из атомов и молекул почвы, воздуха и песка.

Но у нанотехнологий есть и тёмная сторона. Об этом говорит и сам Декслер. Ему принадлежит концепция конца света от «серой слизи», т.е. неуправляемых саморазмножающихся нанороботов, которые могут поглотить жизнь на Земле.

Перспективы профессии

Искусственный фагоцит сможет уничтожать чужеродные бактерии и вирусы.

В утверждении, что нанотехнологи избавят человечество от голода и болезней, почти нет преувеличения. Например, ученые уже разработали методики лечения злокачественных опухолей с помощью нанополимеров, которые доставляют большие дозы лекарства напрямую в раковые клетки. У этого метода гораздо меньше побочных эффектов, чем у традиционной химиотерапии.

Разработали способы восстановления клеток организма (нанопластырь для восстановления миокарда, повреждённого инфарктом, и пр.). Таких примеров очень много. Попытки использовать нанотехнологи для лечения предпринимают и в России. Предприятие «Нанокор» в Томске в 2012 году начинает разрабатывать технологию использования биоактивных наночастиц для лечения атеросклеротических бляшек в кровеносных сосудах.

Миниатюрные технологии нужны не только в медицине. Например, американские военные планируют в 2015 году запустить в космос наноспутники, которые отправятся к отработавшим свой срок орбитальным аппаратам, встроятся в их системы управления и таким образом дадут списанным спутникам новую жизнь. Энергию они будут получать от солнечных батарей старых спутников.

Теперь уже очевидно, что нанотехнологии — это новые возможности для бизнеса и конкуренции. Сегодня отрасль развивается стремительно. По мнению европейских экспертов, в 2010—2015 гг. во всём мире (включая Европу, Японию, Китай, США и Россию) в ней будут работать больше 2 000 000 специалистов.

В России за развитие нанотехнологий отвечает «Российская корпорация нанотехнологий» (РосНа-ноТех). Уже ближайшие годы профессия специалист по нанотехнологиям должна стать одной из самых востребованных профессий в России.

Рабочее место

Профессия нанотехнолог позволяет работать в производственных компаниях, в научно-исследовательских центрах всего мира. Например, в «Центре конвергентных нано-, био-, информационных и когнитивных наук и технологий» Курчатовского института.

Важные качества

Профессия нанотехнолога предполагает интерес к исследовательской работе, научный склад ума.

Оплата труда

Зарплата на 05.09.2019

Россия 15000—15000 ₽

Знания и навыки

Нанотехнология находится на стыке химии, биологии, физики, математики, информатики. Для успешной работы нужны знания по математике, физике, химии, биологи, информатике. А также специальные знания, которые зависят от конкретной специализации. Для общения с иностранными коллегами и чтения литературы требуется знание английского языка.

Где учат

Для работы в сфере нанотехнологий необходимо получить в вузе одну из специальностей: «нанотехнологии», «нанотехнологии в электронике», «наноматериалы».

Вузы, в которых можно получить профессию нанотехнолога (неполный список)

  • Московский физико-технический институт (государственный университет)

Факультет нано-, био-, информационных и когнитивных технологий (ФНБИК).

Научно-техническая база - в Курчатовском институте.

  • Московский государственный технический университет им. Н.Э.Баумана.

Научно-техническая база - договор с РОСНАНО.

  • Национальный исследовательский технологический университет «МИСиС».

Институт новых материалов и нанотехнологий.

  • Московский государственный институт радиотехники, электроники и автоматики (МИРЭА).

Факультет электроники.

  • Московский государственный институт электроники и математики (МИЭМ).

Факультет электроники.

  • Московский государственный институт электронной техники (технический университет) МИЭТ.

Факультет электроники и компьютерных технологий.

  • Московский государственный университет инженерной экологии (МГУИЭ).

Факультет автоматизации и информационных технологий.

  • Московский энергетический институт (государственный университет) (МЭИ).
  • Институт тепловой и атомной энергетики.
  • Российский государственный технологический университет им. К. Э. Циолковского (МАТИ).
  • Российский химико-технологический университет им. М.Д. Менделеева (РХТУ).
  • Институт материалов современной энергетики и нанотехнологии.

1. Определения и терминология

2. Нанотехнологии: история возникновения и развития

3. Фундаментальные положения

Сканирующая зондовая микроскопия

Наноматериалы

Наночастицы

Самоорганизация наночастиц

Проблема образования агломератов

Микро- и нанокапсулы

Нанотехнологические сенсоры и анализаторы

4. Применения нанотехнологии

Медицина и биология

В автомобильной индустрии

Сельское хозяйство

Экология

Освоение космоса

Кибернетика

5. Отношение общества к нанотехнологиям

Нанотехнология — это междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

Нанотехнология - это технология изучения нанометровых объектов, и работы с объектами порядка нанометра (миллионная доля миллиметра) что сравнимо с размерами отдельных молекул, и атомов.

Определения и терминология

В Техническом комитете ISO/ТК 229 под нанотехнологиями подразумевается следующее:

знание и управление процессами, как правило, в масштабе 1 нм, но не исключающее масштаб менее 100 нм, в одном или более измерениях, когда ввод в действие размерного эффекта (явления) приводит к возможности новых применений;

использование свойств объектов и материалов в нанометровом масштабе, которые отличаются от свойств свободных атомов или молекул, а также от объемных свойств вещества, состоящего из этих атомов или молекул, для создания более совершенных материалов, приборов, систем, реализующих эти свойства.

Согласно «Концепции развития в России работ в области нанотехнологий на до 2010 года» (2004 г.) нанотехнология определяется как совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, хотя бы в одном измерении, и в результате этого получившие принципиально новые качества, позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба.


Практический аспект нанотехнологий включает в себя производство устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и наночастицами. Подразумевается, что не обязательно объект должен обладать хоть одним линейным размером менее 100 нм — это могут быть макрообъекты, атомарная структура которых контролируемо создаётся с разрешением на уровне отдельных атомов, либо же содержащие в себе нанообъекты. В более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул (например, силы Ван-дер-Ваальса), квантовые эффекты.

Нанотехнология и в особенности молекулярная технология — новые, очень мало исследованные дисциплины. Основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных достижений позволяет относить её к высоким технологиям.


Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические возрастают экспоненциально. Нанотехнология — следующий логический шаг развития электроники и других наукоёмких производств.

Нанотехнология является логическим продолжением и развитием микротехнологии.


Микротехнология, совокупность науки, изучающей микрообьекты, и технологий работы с объектами порядка микрометра (тысячная доля миллиметра), стала основой для создания современной микроэлектроники. Сотовые телефоны, компьютеры, интернет, разнообразная бытовая, промышленная и потребительская электроника, всё это неузнаваемо изменило как мир, так и человека.

Столь же сильно изменит мир и нанотехнология. Нанотехнологии требуют очень больших вычислительных мощностей, чтобы смоделировать поведение атомов, и высокоточных электрических и механических приспособлений, чтобы упорядочить атомы и молекулы разных материалов в новом порядке. Таким образом создается новая материя. Впервые в истории цивилизации создаются материалы с новыми, нужными человеку свойствами. Перечислим только некоторые из них. Это прозрачный и гибкий материал с легкостью пластика и твердостью стали, гибкое пластиковое покрытие, представляющее собой солнечную батарею, материал для электрода электрической батереи, которая в десятки и сотни раз сильнее обычной.

Даже на современном уровне нанотехнология позволяет получить гибкие пластиковые экраны с толщиной бумажного листа, и яркостью современного монитора, компактную электронику на основе соединений углерода, с размерами и энергоемкостью в сотни раз ниже современных. А ещё нанотехнология это - легкие и гибкие конструктивные и строительные материалы, высокоэффективные фильтры для воздуха и воды, лекарства и косметика, действующие на более глубоком уровне, стремительное удешевление стоимости полета в космос, и многое-многое другое.


Пока все нанотехнологические материалы стоят очень дорого. Но, как и в случае компьютерной отрасли, массовое производство приведет к резкому уступке в цене. В невидимой борьбе за те прибыли, и влияние, которое даст нанотехнология, основными спекулянтами являются США, и Россия . Израиль, Европейские страны, и страны Латинской Америки стремительно наращивают свой потенциал в этой области.

К сожалению, несмотря на наличие хорошей научной базы, и крупных частных капиталов, Украинские научные разработки и прикладные продукты в мире представлены слабо.

Особую важность для нанотехнологических разработок имеют научные национальные нанотехнологические программы. Более 50 развитых стран объявили о старте собственных нанотехнологических программ.

Нанотехнологии: история возникновения и развития

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества.

Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап — полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле — таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Вот как Р. Фейнман описал предполагаемый им манипулятор:

Я думаю о создании системы с электрическим управлением, в которой используются изготовленные обычным способом «обслуживающие роботы» в виде уменьшенных в четыре раза копий «рук» оператора. Такие микромеханизмы смогут легко выполнять операции в уменьшенном масштабе. Я говорю о крошечных роботах, снабженных серводвигателями и маленькими «руками», которые могут закручивать столь же маленькие болты и гайки, сверлить очень маленькие отверстия и т. д. Короче говоря, они смогут выполнять все работы в масштабе 1:4. Для этого, конечно, сначала следует изготовить необходимые механизмы, инструменты и руки-манипуляторы в одну четвертую обычной величины (на самом деле, ясно, что это означает уменьшение всех поверхностей контакта в 16 раз). На последнем этапе эти устройства будут оборудованы серводвигателями (с уменьшенной в 16 раз мощностью) и присоединены к обычной системе электрического управления. После этого можно будет пользоваться уменьшенными в 16 раз руками-манипуляторами! Сфера применения таких микророботов, а также микромашин может быть довольно широкой — от хирургических операций до транспортирования и переработки радиоактивных материалов. Я надеюсь, что принцип предлагаемой программы, а также связанные с ней неожиданные проблемы и блестящие возможности понятны. Более того, можно задуматься о возможности дальнейшего существенного уменьшения масштабов, что, естественно, потребует дальнейших конструкционных изменений и модификаций (кстати, на определенном этапе, возможно, придется отказаться от «рук» привычной формы), но позволит изготовить новые, значительно более совершенные устройства описанного типа. Ничто не мешает продолжить этот процесс и создать сколько угодно крошечных станков, поскольку не имеется ограничений, связанных с размещением станков или их материалоемкостью. Их объем будет всегда намного меньше объема прототипа. Легко рассчитать, что общий объем 1 млн уменьшенных в 4000 раз станков (а следовательно, и масса используемых для изготовления материалов) будет составлять менее 2 % от объема и массы обычного станка нормальных размеров.

Понятно, что это сразу снимает и проблему стоимости материалов. В принципе, можно было бы организовать миллионы одинаковых миниатюрных заводиков, на которых крошечные станки непрерывно сверлили бы отверстия, штамповали детали и т. п. По мере уменьшения размеров мы будем постоянно сталкиваться с очень необычными физическими явлениями. Все, с чем приходится встречаться в жизни, зависит от масштабных факторов. Кроме того, существует еще и проблема «слипания» материалов под действием сил межмолекулярного взаимодействия (так называемые силы Ван-дер-Ваальса), которая может приводить к эффектам, необычным для макроскопических масштабов. Например, гайка не будет отделяться от болта после откручивания, а в некоторых случаях будет плотно «приклеиваться» к поверхности и т. д. Существует несколько физических проблем такого типа, о которых следует помнить при проектировании и создании микроскопических механизмов.

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство предметов торговли размеров порядка нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер, особенно в своей книге «Машины создания: грядёт эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology»), которая вышла в 1986 году. Этим термином он называл новую область науки, которую он исследовал в своей докторской диссертации в Массачусетском Технологическом Институте (МТИ). Результаты своих исследований он впоследствии опубликовал в книге «Nanosystems: Molecular Machinery, Manufacturing, and Computation». Главную роль в его исследованиях играли математические расчёты, поскольку с их помощью до сих пор можно проанализировать предположительные свойства и разработать устройства размеров порядка нанометров.


В основном сейчас рассматривается возможность механического манипулирования молекулами и создание самовоспроизводящихся манипуляторов для этих целей.

Как уже было сказано, это позволит многократно удешевить любые существующие продукты и создать принципиально новые, решить все существующие экологические проблемы. Также такие манипуляторы имеют огромный медицинский потенциал: они способны ремонтировать повреждённые клетки человека, что приводит фактически к реальному техническому бессмертию человека. С другой стороны, создание наноманипуляторов может привести к сценарию «серой жижи». Также предполагают возможным сценарий, когда определённая группа людей получает полное управление над таким манипулятором и использует его, чтобы полностью утвердить свою над другими людьми. Если этот сценарий осуществится, получится идеальная , которую, по-видимому, невозможно будет уничтожить.

Наиболее полное определение НТ дано в материалах национальной нанотехнологической инициативы США :

НТ - научно-исследовательские и технологические разработки на атомарном, молекулярном или макромолекулярном уровнях с субстананометровой шкалой по одной или более координатам для обеспечения фундаментального понимания явлений и свойств материалов при таких размерах и для изготовления и использования структур, приборов и систем, которые имеют новые свойства и функции вследствие их малых размеров.


Вместе с тем в работе показано, что основы НТ были заложены еще во второй половине XIX века в связи с развитием коллоидной химии. В 1857 г. М. Фарадей впервые получил устойчивые коллоидные растворы (золи) золота, имеющие красный цвет. В 1861 г. Т. Грэму удалось провести коагуляцию золей и превратить их в гели. Он также ввел деление веществ по степени дисперсности структуры на коллоидные (аморфные) и кристаллоидные (кристаллические).

Кристаллическое или аморфное состояние вещества зависит, прежде всего, от его собственных свойств, а затем от условий, при которых происходит переход в твердое состояние.

В 1869 г. химик И. Борщов высказал гипотезу, что вещество в зависимости от условий может быть получено и в кристалловидном (склонность к образованию кристаллов), и в коллоидном (аморфном) состоянии. Изменяя соответствующим образом условия перехода вещества в твердое состояние, можно получить в кристаллическом состоянии типично аморфные вещества (каучук, клей, стекло) и, наоборот, в аморфном (стеклообразном) состоянии получить типично кристаллические вещества (металлы и поваренную соль).

Поскольку в XIX веке для наблюдения объектов и измерения их размеров существовали только оптические микроскопы, которые не позволяли обнаруживать частицы в коллоидных растворах и зерна в коллоидных веществах, то коллоидными назвали вещества с ультравысокой степенью дисперсности, частицы, волокна, зерна и пленки которых нельзя обнаружить в оптические микроскопы, имеющие разрешение 300 нм при использовании белого света и 150 нм при использовании ультрафиолетового излучения.

В 1892 г. Д. Ивановским была открыта первая биологическая коллоидная частица - вирус мозаичной болезни табака, а в 1901 г. У. Рид выделил первый вирус человека - вирус желтой лихорадки. Следует отметить, что вирусы имеют характерные размеры от 40 до 80 нм.


В 1903 г. Р. Зигмонди и Р. Зидентопфом был изобретен оптический ультрамикроскоп, имеющий разрешение до 5 нм и позволивший наблюдать коллоидные частицы. Ультрамикроскоп построен на принципе наблюдения в отраженном свете, благодаря чему становятся видимыми более мелкие объекты, чем в обыкновенном микроскопе. С помощью ультрамикроскопа Р. Зигмонди удалось установить, что в коллоидных растворах (золях) золота желтого цвета частицы имеют размеры 20 нм, красного - 40 нм, а синего - 100 нм.

В 1904 г. П. Веймарном установлено: Между миром молекул и микроскопически видимых частиц существует особая форма вещества с комплексом присущих ей новых физико-химических свойств - ультрадисперсное или коллоидное состояние, образующееся при степени его дисперсности в области 105-107 см-1, в котором пленки имеют толщину, а волокна и частицы - размер в поперечнике в диапазоне 1,0-100 нм.

Классификация состояния вещества по степени дисперсности приведена в табл.1. Видно, что коллоидное состояние является предельно высокодисперсным или ультрадисперсным состоянием вещества.

Все дисперсные системы являются гетерогенными, так как состоят из сплошной непрерывной фазы - дисперсионной среды и находящихся в ней раздробленных частиц - дисперсной фазы. Обязательное условие их существования - взаимная нерастворимость дисперсной фазы и дисперсионной среды.


Коллоидные системы часто называются ультрамикрогетерогенными, чтобы подчеркнуть, что раздела фаз в них не может быть обнаружена с помощью оптических микроскопов. Если частицы дисперсной фазы имеют одинаковые размеры, системы называются монодисперсными, а если разные, то - полидисперсными системами.

Свойства веществ и материалов зависят от их структуры, характеризующейся связанными между собой и влияющими на такие свойства уровнями.

Первый уровень структуры называется кристаллическим и характеризует пространственное расположение атомов, ионов и молекул в кристаллической решетке твердого тела, на которое может накладываться влияние точечных дефектов (вакансий, атомов в междоузлиях, чужеродных атомов). Точечные дефекты подвижны и во многом определяют диффузионные и электрические свойства материалов, особенно полупроводников.

Второй уровень связан с присутствием в твердом теле различных линейных и плоскостных дефектов структуры (дислокаций), число которых в единице объема возрастает при механических нагрузках, приводящих к появлению внутренних напряжений в материале. Подобно точечным дефектам дислокации подвижны, а их плотность и способность к перемещению в твердом теле определяют механические свойства материалов, особенно металлов .

Третий уровень структуры - это объемные дефекты типа пор и капилляров, которые могут создаваться в материалах в процессе их формирования или использования. Они связаны с отсутствием некоторых участков твердого тела.

Все вещества в твердом состоянии можно разделить на монокристаллические, поликристаллические, аморфные (или нанокристаллические) и молекулярные твердые растворы.


Если упорядоченное расположение частиц (атомов, молекул или ионов), отражаемое элементарной ячейкой, сохраняется во всем объеме твердого тела, то образуются монокристаллы.

Если упорядоченность структуры сохраняется в макроскопических (>100 мкм) и микроскопических (>0,1 мкм) участках твердого тела (см.табл. 1), то образуются поликристаллические вещества с так называемыми кристаллитами или зернами кристаллитов соответствующих размеров и пространственно разориентированными друг относительно друга кристаллическими решетками.

До середины 80-х годов прошлого века считалось, что в аморфных веществах отсутствует упорядоченное расположение частиц. Однако проведенные с помощью высокоразрешающих электронных просвечивающих, сканирующих туннельных и силовых атомных микроскопов исследования, особенно на металлических стеклах, позволили обнаружить у аморфных веществ кристаллиты или зерна с размерами в субстананометровом диапазоне.

Таким образом, аморфные вещества и материалы характеризуются ультрадисперсной (коллоидной) степенью раздробленности зерен кристаллической фазы, и их можно называть нанокристаллическими.

В молекулярных твердых растворах, как и в жидких, обычно называемых истинными растворами или просто растворами, распределенное вещество равномерно перемешано с молекулами дисперсионной среды на молекулярном уровне. Поэтому молекулярные твердые и жидкие растворы, не имеющие фаз и поверхностей раздела, являются системами гомогенными.

Кристаллическое состояние вещества всегда более устойчиво, чем аморфное (нанокристаллическое), поэтому самопроизвольный переход из аморфного состояния в кристаллическое возможен, а обратный - нет. Примером может служить расстекловывание - самопроизвольная кристаллизация стекла при повышенных температурах.

Дисперсные системы, в том числе коллоидные, классифицируются по степени дисперсности, агрегатному состоянию дисперсной фазы и дисперсионной среды, интенсивности взаимодействия между ними, отсутствию или образованию структур.

Многообразие коллоидных систем обусловлено тем, что образующие их фазы могут находиться в любом из трех агрегатных состояний; иметь неорганическую, органическую и биологическую природу. В зависимости от агрегатного состояния дисперсной фазы и дисперсионной среды возможны следующие 9 типов дисперсных систем:

Ж1 - Г2, Ж1 - Ж2, Ж1 - Т2,

Т1 - Г2, Т1 - Ж2, Т1 - Т2,

Г1 - Ж2, Г1 - Т2, Т1(Ф1) - Т1(Ф2),

где Г, Ж и Т - газообразное, жидкое и твердое состояние, а цифры 1 и 2 относятся соответственно к дисперсной фазе и дисперсионной среде. Для последнего типа дисперсной системы Ф1 и Ф2 обозначают разные фазы (полиморфные модификации) твердого состояния одного вещества.

В газообразной дисперсионной среде могут быть диспергированы только жидкости и твердые тела, так как все газы при не очень высоких давлениях неограниченно растворяются друг в друге.

Дисперсные системы с газообразной дисперсионной средой называются аэрозолями. Туманы представляют собой аэрозоли с жидкой дисперсной фазой (Ж1 - Г2), а дымы - аэрозоли с твердой дисперсной фазой (Т1 - Г2). Простейшим примером аэрозоля является табачный дым, средний размер твердых частиц которого - 250 нм, тогда как размеры частиц сажи или вулканического пепла могут быть меньше 100 нм, и их аэрозоли относятся к ультрадисперсным (коллоидным) системам.

В жидкой дисперсионной среде могут быть диспергированы газы, жидкости и твердые тела. Пены - это дисперсия газа в жидкости (Г1 - Ж2). Эмульсии - дисперсные системы, в которых одна жидкость раздроблена в другой, не растворяющей ее жидкости (Ж1 - Ж2). Наибольшее значение для химии и биологии имеют коллоидные системы, в которых дисперсионной средой является жидкая фаза, а дисперсной фазой - твердое вещество (Т1 - Ж2), называемые коллоидными растворами или золями, часто лиозолями. Если дисперсионной средой является вода, то такие золи называются гидрозолями, а если органическая жидкость, то - органозолями. Коллоидные растворы очень важны, так как с ними связаны многие процессы, протекающие в живых организмах.

В твердой дисперсионной среде могут быть диспергированы газы, жидкости и твердые тела. Системы (Г1 - Т2) называются твердыми пенами или капиллярно дисперсными системами, в которых газ находится в виде отдельных замкнутых ячеек, разделенных твердой дисперсионной средой. К твердым пенам относятся пенопласты, пенобетон, пемза, шлак, металлы с включением газов, различные пористые материалы (активированный уголь, силикагель, древесина), а также мембраны и диафрагмы, фотонно-кристаллические волокна, кожа, бумага, ткани.


К системе (Ж1 - Т2) относится широкий класс кристаллогидратов - кристаллов, содержащих молекулы кристаллизационной воды. Типичными кристаллогидратами являются многие природные минералы, например гипс CaSO4∙2H2O, карналлит MgCl2∙KCl∙6H2O, алюмокалиевые квасцы KAl(SO4)2·12H2O.

Большое практическое значение имеют дисперсные системы типа (Т1 - Т2), к которым относятся важнейшие строительные материалы, металлокерамические композиции, некоторые сплавы, эмали, ряд минералов, в частности некоторые драгоценные и полудрагоценные камни, многие горные породы, в которых при застывании магмы выделялись кристаллы.

Цветные стекла образуются в результате диспергирования в силикатном стекле наночастиц металлов или их оксидов. Эмали - это силикатные стекла с включениями пигментов SnO2, TiO2 и ZrO2, придающих эмалям непрозрачность и окраску.

Таким образом, под коллоидами понимается не отдельный класс веществ, а особое состояние любого вещества, характеризующееся, прежде всего, определенными размерами частиц. Под наноструктурированием твердого тела следует понимать перевод вещества или материала в коллоидное (ультрадисперсное) состояние, т.е. создание в структуре физических или химических фаз субстананометровых размеров, которые можно рассматривать как своеобразные наночастицы, отделенные от остальной структуры поверхностями раздела.

Такими наночастицами, кроме механически диспергированных нанопорошков, являются:

Нанокристаллические зерна;

Наноразмерные полиморфные фазы;

Наноразмерные структурные дефекты (наноблоки);

Поверхностные наноструктуры (ямки, выступы, канавки, стенки);

Объемные наноструктуры (поры и капилляры);

Наноразмерные химические фазы из чужеродных атомов или молекул, cформированные на его поверхности или в объеме и имеющие волокнисто- или корпускулярнообразную форму;

Наноразмерные структуры, образующиеся в результате физического или химического осаждения из газовой или жидкой фазы (фуллерены, углеродные нанотрубки);

Пленки веществ наноразмерной толщины, сформированные в периодической последовательности;

Макромолекулы, полимолекулярные ансамбли, молекулярные пленки, молекулярные комплексы типа "хозяин - гость" (наличие распределения по размерам является признаком, отличающим наночастицы от макромолекул); наноразмерные и наноструктурированные биологические структуры (вирусы, протеины, гены, белки, хромосомы, молекулы ДНК и РНК).

Коллоидное состояние вещества - это качественно особая форма его существования с комплексом присущих ей физико-химических свойств. По этой причине область естествознания, изучающая объективные физические и химические закономерности гетерогенного ультрадисперсного состояния вещества, высокомолекулярных соединений (полимеров , комплексных соединений и молекулярных ансамблей) и межфазовых поверхностей, сформировалась в начале ХХ века в самостоятельную дисциплину - коллоидную химию.

Быстрое развитие коллоидной химии обусловлено большим значением изучаемых этой наукой явлений и процессов в различных областях человеческой практики. Такие, казалось бы, совершенно различные направления, как жизненные процессы в организмах, образование многих минералов, структура и урожайность почв тесно связаны с коллоидным состоянием вещества. Коллоидная химия является также научной основой индексов пром производства многих материалов.

По мере развития технических средств формирования и манипулирования нанообъектами, а также методик их исследования в коллоидной химии стали выделяться более специализированные дисциплины, такие как химия полимеров и физическая химия поверхности (конец 1950-х годов), супрамолекулярная химия (конец 1970-х годов).

Исследование и изучение наноразмерных и наноструктурированных биологических структур (протеинов, генов, хромосом, белков, аминокислот, ДНК, РНК), являющихся предметом биологии ультрадисперсных систем, привело к созданию в 30-50-х годах вирусологии, в 60-х годах молекулярной биологии и в последней четверти ХХ века генетики и иммунохимии.

Если размеры материала хотя бы в одном измерении меньше критических длин, характеризующих многие физические явления, у такого материала появляются новые уникальные физические и химические свойства квантовомеханической природы, которые изучает и использует для создания новых устройств физика низкоразмерных структур, являющаяся наиболее динамично развивающейся областью современной физики твердого тела.

Результатом исследований низкоразмерных систем (квантовые ямы, провода и точки) стало открытие принципиально новых явлений - целочисленный и дробный квантовый эффект Холла в двумерном электронном газе, вигнеровская кристаллизация квазидвумерных электронов и дырок, обнаружение новых композитных квазичастиц и электронных возбуждений с дробными зарядами.

Область коллоидной химии, изучающая процессы деформирования, разрушения и образования материалов и дисперсных структур, выделилась в физико-химическую механику твердых тел и ультрадисперсных структур. Она сформировалась в середине ХХ века благодаря работам академика П. Ребиндера и его школы как новая знания, пограничная коллоидной химии, молекулярной физике твердого тела, механике материалов и технологии их производства.

Основной задачей физико-химической механики является создание конструкционных материалов с заданными свойствами и оптимальной для целей их применения структурой.

Еще одной отраслью, которая изучает и создает элементы, структуры и приборы в субстананометровом диапазоне, является микроэлектроника, в которой можно выделить наноэлектронику (разработка и производство интегральных схем с субстананометровыми размерами элементов - интегральных наносхем (ИНС), молекулярную электронику, функциональную электронику наноструктурированных материалов и наноэлектромеханические системы (НЭМС).

Суммируя изложенное, а также исходя из анализа, проведенного в работе, можно сформулировать определение НТ: нанотехнология - это контролируемое получение веществ и материалов в коллоидном (ультрадисперсном, наноструктурированном с размерами структурных элементов в диапазоне 1,0-100 нм) состоянии, исследование и измерение их свойств и характеристик и использование их в различных отраслях науки, техники и промышленности .

Все термины, связанные с созданием и изучением коллоидного (наноструктурированного) уровня структуры материи под брендом "нанотехнология", автоматически получили приставку "нано", хотя до середины 1980-х годов они назывались соответственно: механика, фотоника, кристаллография, химия, биология и электроника ультрадисперсных или коллоидных систем; а предметы их исследования носили названия: ультрадисперсные порошки и композиты, аэро-, гидро- и органозоли, обратимые и необратимые гели, ультрадисперсная керамика и т.д.

Возникновение интереса к коллоидному состоянию вещества под брендом "нанотехнология" в последние 20 лет обусловлено, во-первых, его уникальными свойствами, а во-вторых, развитием и созданием технологического и контрольно-измерительного оборудования для получения и исследования субстананоразмерного уровня структуры материи: его физики, химии и биологии.

Вместо открытия новых материалов и явлений в результате счастливого случая или хаотических исследований контролируемый перевод вещества в наноструктурированное (коллоидное) состояние, называемый концепцией нанотехнологии, позволяет делать это систематически. Вместо того чтобы находить наночастицы и наноструктуры с хорошими свойствами с помощью интуиции, знание законов образования и стабилизации ультрадисперсных систем открывает возможность их искусственного конструирования по определенной системе.

Особенно интересным оказалось приобретение некоторыми хорошо известными веществами совершенно новых свойств при наноразмерах.

Наноструктурированные (коллоидные) системы, в соответствии с их промежуточным положением между миром атомов и молекул и миром микроскопических и макроскопических тел, могут быть получены двумя основными путями: диспергированием, т.е. измельчением (дроблением) крупных систем, и конденсацией, т.е. образованием наносистем из атомов, молекул, кластеров и наноструктур.

Методы получения наноструктурированных систем по первому пути называются диспергационными, а по второму - конденсационными. Существуют смешанные методы получения наноструктурированных систем, которые называются соответственно диспергационно-конденсационными и конденсационно-диспергационными.

В традиционной наноэлектронике при изготовлении интегральных наносхем (ИНС) по классической КМОП-технологии контролируемое наноструктурирование функциональных слоев (ФС) на кремниевых пластинах обеспечивается проекционным (фотошаблоны и наноштампы) масочным (резистивные маски) литографическим паттернированием.

При этом используется стратегический подход диспергирования или подход "сверху вниз" (top-down), т.е. осуществляется локальное удаление ненужных областей ФС путем их травления. Точность воспроизведения размеров элементов структур в горизонтальной плоскости обеспечивается с помощью резистивных масок, сформированных в процессах литографии.

В связи с этим, подчеркивая используемый стратегический подход диспергирования или "сверху вниз", традиционную промышленную наноэлектронику удобнее называть Д-наноэлектроникой (D-nanoelectronics).

Конденсационные методы (нелитографические методы синтеза), использующие для получения наноструктурированных систем подход "снизу вверх" (bottom-up), можно разделить на две группы: традиционные и новые, созданные в рамках последних достижений нанотехнологий.

Фундаментальные положения

Сканирующая зондовая микроскопия

Одним из методов, используемых для изучения нанообъектов, является сканирующая зондовая микроскопия. В рамках сканирующей зондовой микроскопии реализованы как не оптические, так и оптические методики.

Исследований свойств поверхности с помощью сканирующего зондового микроскопа (СЗМ) проводят на воздухе при атмосферном давлении, вакууме и даже в жидкости. Различные СЗМ методики позволяют изучать как проводящие, так и не проводящие объекты. Кроме того, СЗМ поддерживает совмещение с другими методами исследования, например с классической оптической микроскопией и спектральными методами.

С помощью сканирующего зондового микроскопа (СЗМ) можно не только увидеть отдельные атомы, но также избирательно воздействовать на них, в частности, перемещать атомы по поверхности. Учёным уже удалось создать двумерные наноструктуры на поверхности, используя данный метод. Например, в исследовательском центре организации IBM, последовательно перемещая атомы ксенонa на поверхности монокристалла никеля, сотрудники смогли выложить три буквы логотипа фирмы , используя 35 атомов ксенона.

При выполнении подобных манипуляций возникает ряд технических трудностей. В частности, требуется создание условий сверхвысокого вакуума (10−11 тор), необходимо охлаждать подложку и микроскоп до сверхнизких температур (4-10 К), поверхность подложки должна быть атомарно чистой и атомарно гладкой, для чего применяются специальные методы её приготовления. Охлаждение подложки производится с целью уменьшения поверхностной диффузии осаждаемых атомов.

Наноматериалы

Наноматериалы - это материалы, структурированные на уровне молекулярных размеров или близком к ним. Структура может быть более или менее регулярной или случайной. Поверхности со случайной наноструктурой могут быть получены обработкой пучками частиц, плазменным травлением и некоторыми другими методами.

Что касается регулярных структур, то небольшие участки поверхности могут быть структурированы "извне" - например, с помощью зондового сканирующего микроскопа (см. ниже). Однако, достаточно большие (~1 мк2 и больше) участки, а также объёмы вещества могут быть структурированы, видимо, только способом самосборки молекул.

Самосборка широко распространена в живой природе. Структура всех тканей определяется их самосборкой из клеток; структура клеточных мембран и органоидов определяется самосборкой из отдельных молекул.

Самосборка молекулярных компонентов разрабатывается как способ построения периодических структур для изготовления наноэлектронных схем, и здесь были достигнуты заметные успехи.

В медицине материалы с наноструктурированной поверхностью могут использоваться для замены тех или иных тканей. Клетки организма опознают такие материалы как "свои" и прикрепляются к их поверхности.


В настоящее время достигнуты успехи в изготовлении наноматериала, имитирующего естественную костную ткань. Так, учёные из Северо-западного университета (США ) Jeffrey D. Hartgerink, Samuel I. Stupp и другие использовали трехмерную самосборку волокон около 8 нм диаметром, имитирующих естественные волокна коллагена, с последующей минерализацией и образованием нанокристаллов гидроксиапатита, ориентированных вдоль волокон. К полученному материалу хорошо прикреплялись собственные костные клетки, что позволяет использовать его как "клей" или "шпатлёвку" для костной ткани.


Представляет интерес и разработка материалов которые обладают противоположным свойством: не позволяют клеткам прикрепляться к поверхности. Одним из возможных применений таких материалов могло бы стать изготовление биореакторов для выращивания стволовых клеток. Дело в том, что, прикрепившись к поверхности, стволовая клетка стремится дифференцироваться, образуя те или иные специализированные клетки. Использование материалов с наноразмерной структурой поверхности для управления процессами пролиферации и дифференциации стволовых клеток представляет собой огромное поле для исследований.


Мембраны с нанопорами могут быть использованы в микрокапсулах для доставки лекарственных средств и для других целей. Так, они могут применяться для фильтрации жидкостей организма от вредных веществ и вирусов. Мембраны могут защищать нанодатчики и другие вживляемые устройства от альбумина и подобных обволакивающих веществ.

Наночастицы

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 100 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дёшевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров — белками, нуклеиновыми кислотами и др. Тщательно очищенные наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.

Нанообъекты делятся на 3 основных класса: трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т. д.; двумерные объекты — плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т. д.; одномерные объекты — вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д. Также существуют нанокомпозиты — материалы, полученные введением наночастиц в какие-либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв.

Американская организация C-Sixty Inc. Проводит предклинические испытания средств на основе фуллереновых наносфер С60 с упорядоченно расположенными на их поверхности химическими группами. Эти группы могут быть подобраны таким образом, чтобы связываться с заранее выбранными биологическими мишенями. Спектр возможных применений чрезвычайно широк. Он включает борьбу с вирусными заболеваниями такими, как грипп и ВИЧ, онкологическими и нейродегенеративными заболеваниями, остеопорозом, заболеваниями сосудов. Например, наносфера может содержать внутри атом радиоактивного элемента, а на поверхности - группы, позволяющие ей прикрепиться к раковой клетке.

Подобные разработки проводятся и в Российской Федерации . В Институте экспериментальной медицины (Санкт-Петербург) использовали аддукт фуллерена с поливинилпирролидоном (ПВП). Это соединение хорошо растворимо в воде, а полости в его структуре близки по размерам молекулам С60. Полости легко заполняются молекулами фуллерена, и в результате образуется водорастворимый аддукт с высокой антивирусной активностью. Поскольку сам ПВП не обладает антивирусным действием, вся активность приписывается содержащимся в аддукте молекулам С60.

В пересчете на фуллерен его эффективная доза составляет примерно 5 мкг/мл, что значительно ниже соответствующего показателя для ремантадина (25 мкг/мл), традиционно используемого в борьбе с вирусом гриппа. В отличие от ремантадина, который наиболее эффективен в ранний период заражения, аддукт С60/ПВП обладает устойчивым действием в течение всего цикла размножения вируса. Другая отличительная особенность сконструированного препарата - его эффективность против вируса гриппа А- и В-типа, в то время как ремантадин действует только на первый тип.

Наносферы могут использоваться и в диагностике, например, как рентгеноконтрастное вещество, прикрепляющееся к поверхности определенных клеток и показывающее их расположение в организме.

Особый интерес вызывают дендримеры. Они представляют собой новый тип полимеров, имеющих не привычное линейное, а ветвящееся строение.

Собственно говоря, первое соединение с такой структурой было получено еще в 50-е годы, а основные методы их синтеза разработаны в основном в 80-е годы. Термин "дендримеры" появился раньше, чем "нанотехнология", и первое время они между собой не ассоциировались. Однако последнее время дендримеры все чаще упоминаются именно в контексте их нанотехнологических (и наномедицинских) применений.


Это связано с целым рядом особых свойств, которыми обладают дендримерные соединения. Среди них:

Предсказуемые, контролируемые и воспроизводимые с большой точностью размеры макромолекул;

Наличие в макромолекулах каналов и пор, имеющих хорошо воспроизводимые формы и размеры;

Способность к высокоизбирательной инкапсуляции и иммобилизации низкомолекулярных веществ с образованием супрамолекулярных конструкций "гость-хозяин".

Самоорганизация наночастиц

Одним из важнейших вопросов, стоящих перед нанотехнологией — как заставить молекулы группироваться определенным способом, самоорганизовываться, чтобы в итоге получить новые материалы или устройства. Этой проблемой занимается раздел химии — супрамолекулярная химия. Она изучает не отдельные молекулы, а взаимодействия между молекулами, которые способны упорядочить молекулы определённым способом, создавая новые вещества и материалы. Обнадёживает то, что в природе действительно существуют подобные системы и осуществляются подобные процессы. Так, известны биополимеры, способные организовываться в особые структуры. Один из примеров — белки, которые не только могут сворачиваться в глобулярную форму, но и образовывать комплексы — структуры, включающие несколько молекул протеинов (белков).


Уже сейчас существует метод синтеза, использующий специфические свойства молекулы ДНК. Берётся комплементарная ДНК, к одному из концов подсоединяется молекула А или Б. Имеем 2 вещества: ----А и ----Б, где ---- — условное изображение одинарной молекулы ДНК. Теперь, если смешать эти 2 вещества, между двумя одинарными цепочками ДНК образуются водородные связи, которые притянут молекулы А и Б друг к другу. Условно изобразим полученное соединение: ====АБ. Молекула ДНК может быть легко удалена после окончания процесса.

Проблема образования агломератов

Частицы размерами порядка нанометров или наночастицы, как их называют в научных кругах, имеют одно свойство, которое очень мешает их использованию. Они могут образовывать агломераты, то есть слипаться друг с другом. Так как наночастицы многообещающи в отраслях производства керамики, металлургии, эту проблему необходимо решать. Одно из возможных решений — использование веществ — дисперсантов, таких как цитрат аммония (водный раствор), имидазолин, олеиновый спирт (нерастворимых в воде). Их можно добавлять в среду, содержащую наночастицы. Подробнее это рассмотрено в источнике "Organic Additives And Ceramic Processing, ", D. J. Shanefield, Kluwer Academic Publ., Boston (англ.).

Микро- и нанокапсулы

Для доставки лекарственных средств в нужное место организма могут быть использованы миниатюрные (~1 мк) капсулы с нанопорами. Уже испытываются подобные микрокапсулы для доставки и физиологически регулируемого выделения инсулина при диабете 1-го типа. Использование пор с размером порядка 6 нм позволяет защитить содержимое капсулы от воздействия иммунной системы организма. Это дает возможность помещать в капсулы инсулин-продуцирующие клетки животного, которые иначе были бы отторгнуты организмом.

Микроскопические капсулы сравнительно простой конструкции могут взять на себя также дублирование и расширение естественных возможностей организма. Примером такой концепции может послужить предложенный Р. Фрейтасом респироцит - искусственный носитель кислорода и двуокиси углерода, значительно превосходящий по своим возможностям как эритроциты крови, так и существующие кровезаменители (например, на основе эмульсий фтороуглеродов). Более подробно возможная конструкция респироцита будет рассмотрена ниже.


Нанотехнологические сенсоры и анализаторы

Использование микро- и нанотехнологий позволяет многократно повысить возможности по обнаружению и анализу сверхмалых количеств различных веществ. Одним из вариантов такого рода устройства является "лаборатория на чипе" (lab on a chip. Это пластинка, на поверхности которой упорядоченно размещены рецепторы к нужным веществам, например, антитела. Прикрепление молекулы вещества к рецептору выявляется электрическим путем или по флюоресценции. На одной пластинке могут быть размещены датчики для многих тысяч веществ.



Такое устройство, способное обнаруживать буквально отдельные молекулы может быть использовано при определении последовательности оснований ДНК или аминокислот (для целей идентификации, выявления генетических или онкологических заболеваний), обнаружения возбудителей инфекционных заболеваний, токсических веществ.


Устройство размером в несколько миллиметров может быть помещено на поверхности кожи (для анализа веществ, выделяемых с потом) или внутри организма (в полость рта, желудочно-кишечный тракт, под кожу или в мышцу). При этом оно сможет сообщать о состоянии внутренней среды организма, сигнализировать о любых подозрительных изменениях.

В Институте молекулярной биологии им. Энгельгардта Российской академии наук разработана система, предназначенная для экспресс выявления штамма возбудителя; на одном чипе размещается около сотни флуоресцентных датчиков.



Интересную идею разрабатывают сразу несколько групп исследователей. Суть ее состоит в том, чтобы "пропустить" молекулу ДНК (или РНК) через нанопору в мембране. Размер поры должен быть таким, чтобы ДНК проходила в "распрямленном" виде, одно основание за другим. Измерение электрического градиента или квантового туннельного тока через пору позволило бы определить, какое основание проходит через нее сейчас. Основанный на таком принципе прибор позволил бы получить полную последовательность ДНК за один проход.

Применения нанотехнологии

Медицина и биология

Станет возможным "внедрение" в живой организм на уровне атомов. Последствия могут быть самыми различными - от "восстановления" вымерших видов до создания новых типов живых существ, биороботов. Создание молекулярных роботов-врачей, которые "жили" бы внутри человеческого организма, устраняя все возникающие повреждения, или предотвращали бы возникновение таковых, включая повреждения генетические.

Как утверждают ученые из университета штата Мичиган, настанет тот день, когда с помощью нанотехнологий в кровяные клетки человека можно будет встраивать микроскопические датчики, предупреждающие о появлении первых признаков радиационной угрозы или развития болезни.

На протяжении последних лет сотрудники Центра биологических нанотехнологий под руководством доктора Джеймса Бэйкера работают над созданием микродатчиков, которые будут использоваться для обнаружения в организме раковых клеток и борьбы с этой страшной болезнью.

Новая методика распознания раковых клеток базируется на вживлении в тело человека крошечных сферических резервуаров, сделанных из синтетических полимеров под названием дендримеры (от греч. dendron - дерево). Эти полимеры были синтезированы в последнее десятилетие и имеют принципиально новое, не цельное строение, которое напоминает структуру кораллов или дерева. Такие полимеры называются сверхразветвленными или каскадными. Те из них, в которых ветвление имеет регулярный характер, и называются дендримерами. В диаметре каждая такая сфера, или наносенсор, достигает всего 5 нанометров - 5 миллиардных частей метра, что позволяет разместить на небольшом участке пространства миллиарды подобных наносенсоров.

Оказавшись внутри тела, эти крошечные датчики проникнут в лимфоциты - белые кровяные клетки, обеспечивающие защитную реакцию организма против инфекции и других болезнетворных факторов. При иммунном ответе лимфоидных клеток на определенную болезнь или условия окружающей среды - простуду или воздействие радиации, к примеру, - белковая структура клетки изменяется. Каждый наносенсор, покрытый специальными химическими реактивами, при таких изменениях начнет флуоресцировать или светиться.

Чтобы увидеть это свечение, д-р Бэйкер и его коллеги собираются создать специальное устройство, сканирующее сетчатку глаза. Лазер такого устройства должен засекать свечение лимфоцитов, когда те один за другим проходят сквозь узкие капилляры глазного дна. Если в лимфоцитах находится достаточное количество помеченных сенсоров, то для того, чтобы выявить повреждение клетки, понадобится 15-секундное сканирование, заявляют ученые.

Сама идея находится пока в состоянии исследования, однако она уже привлекла внимание руководства НАСА, которое выделило на проведение дальнейших исследований 2 млн. Долларов. НАСА заинтересовала возможность создания вышеописанных датчиков, постоянно отслеживающих уровень радиации, которому подвергается космонавт, и появление любых признаков болезни или инфекции в его организме.

По словам Бэйкера, его команда работала над подобной технологией выявления раковых клеток, однако для завершения исследования пока еще далеко. Пока неясно, например, каким образом можно будет уловить свечение наносенсоров в белых клетках крови, когда вокруг находится огромное количество более темных красных кровяных клеток. Исследователи уже добились определенных успехов на лабораторных опытах с культурами клеток, и уже в этом году планируется испытать новую технологию на животных.

Ученые из штата Мичиган утверждают, что с помощью нанотехнологий можно будет встраивать микроскопические датчики в кровяные клетки человека, которые будут предупреждать о признаках радиации или развития болезни. Так в США, по предложению NASA, ведется разработка таких наносенсоров. Джейм Бейнер представляет себе «наноборьбу» с космическими излучениями так перед стартом астронавт используя шприц для подкожных инъекций, вводят в кроваток прозрачную жидкость, насыщенную миллионами наночастиц на время полета он вставляет себе в ухо маленькое устройство (наподобие слухового аппарата). В течение полета это устройство будет использовать маленький лазер для поиска светящихся клеток. Это возможно, т.к. клетки проходят по капиллярам барабанной перепонки. По беспроводной связи клеток будет передаваться на главный компьютер космического корабля, а затем обрабатывается. В случае чего будут приниматься необходимые меры.


Все это может воплотиться в реальность примерно через 5-10 лет. А наночастицы ученые используют уже более 5 лет.

А сейчас, сенсоры тоньше человеческого волоса могут оказаться в 1000 раз чувствительнее стандартных анализов ДНК. Американские ученые, разработавшие эти наносенсоры, полагают, что врачи смогут проводить целый спектр различных анализов, пользуясь лишь одной каплей крови. Одним из преимуществ этой системы является возможность моментально пересылать результаты анализа на карманный компьютер. Исследователи полагают, что на разработку полностью функциональной модели наносенсора, которым смогут воспользоваться врачи в повседневной работе, понадобиться около пяти лет.

С помощью нанотехнологий медицина сможет не только с любой болезнью, но и предотвращать ее появление, сможет помогать адоптации человека в космосе.

Когда механизм завершит свою работу, нанодоктора должны будут удалять нанороботов из организма человека. Поэтому опасность того, что «устаревшие нанороботы», оставшиеся в теле человека будут работать неверно, очень мала. Нанороботы должны будут спроектированы так, чтобы избежать сбоев в работе и уменьшить медицинский . А как нанороботы будут удалены из тела? Некоторые из них будут способны к самоудалению из организма человека путем естественных каналов. Другие же будут спроектированы таким образом, чтобы их могли удалить медики. удаления будет зависеть от устройства данного наноробота.

Считается, что первостепенной опасностью для пациента будет некомпетентность лечащего врача. Но ведь ошибки могут происходить и в неожиданных случаях. Одним из непредвиденных случаев может быть взаимодействие между роботами при их столкновении. Такие неисправности трудно будет определить. Иллюстрацией такого случая может служить работа двух видов нанороботов А и В в организме человека. Если наноробот А будет удалять последствия работы робота В, то это приведет к повторной работе А, и этот будет продолжаться до бесконечности, то есть нанороботы будут исправлять работу друг друга. Чтобы таких ситуаций не возникало лечащий врач должен постоянно следить за работой нанороботов и в случае чего перепрограммировать их. Поэтому квалификация врача является очень важным фактором.


Как известно, наша иммунная система реагирует на чужеродные тела. Поэтому размер наноробота будет играть важную роль при этом, так же как шероховатость поверхности и подвижность устройства. Утверждается что проблема биосовместимости не очень сложна. Выходом из этой проблемы будет создание роботов на основе алмазоидных материалов. Благодаря сильной поверхностной энергии и алмазоидной поверхности и сильной ее гладкости внешняя оболочка роботов будет химически инертной.

Нанотехнологии, применяемые в медицине в последнее время

Уже сейчас нанотехнологии применяются в медицине. Основными областями ее применения являются: технологии диагностики, лекарственные аппараты, протезирование и имплонтанты.


Ярким примером является открытие профессора Азиза. Людям, страдающим болезнью Паркинсона, через два крошечных отверстия в черепе внедряют в мозг электроды, которые подключены к стимулятору. Примерно через неделю больному вживляют и сам стимулятор в брюшную полость. Регулировать напряжение пациент может сам с помощью переключателя. С болью удается справиться уже в 80 % случаях:

У кого-то боль исчезает совсем, у кого-то затихает. Через метод глубокой стимуляции мозга прошло около четырех десятков людей.

Многие коллеги Азиза говорят, что этот метод не эффективен и может иметь негативные последствия. Профессор же убежден, что метод действенен. Ни то ни другое сейчас не доказано. Мне кажется надо верить лишь сорока пациентам, которые избавились от невыносимой боли. И снова захотели жить. И если уже 8 лет этот метод практикуется и не сказывается негативно на здоровье больных, почему бы тогда не расширить его применение.

Еще одним революционным открытием является биочип - небольшая пластинка с нанесенными на нее в определенном порядке молекулами ДНК или белка, применяемые для биохимических анализов. Принцип работы биочипа прост. На пластиковую пластинку наносят определенные последовательности участков расщепленной ДНК. При анализе на чип помещают исследуемый материал. Если он содержит такую же гинетическую информацию, то они сцепливаются. В результате чего можно наблюдать. Преимуществом биочипов являются большое количество биологических тестов со значительной экономией исследуемого материала, реактивов, трудозатрат и время на проведение анализа.

Генерология

Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и "облагораживания" тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены в настоящее время методами крионики. Прогнозируемый срок реализации: третья - четвертая четверти XXI века.


Промышленность

Замена традиционных методов производства сборкой молекулярными роботами предметов потребления непосредственно из атомов и молекул. Вплоть до персональных синтезаторов и копирующих устройств, позволяющих изготовить любой предмет. Первые практические результаты могут быть получены в начале XXI века.

Графен. В октябре 2004 года в Манчестерском университете было создано небольшое количество материала, названного графен. Роберт Фрейтас предполагает, что этот материал может служить подложкой для создания алмазных механосинтетических устройств.

Спутниковые коммуникации широко используются для телевизионной, Интернет и телефонной связи. Космические системы позиционирования используются самолётами, морскими судами, автомобилями и туристами.

Человечество уже выросло из своей колыбели — без космоса наша жизнь уже немыслима. Поэтому сегодня многие страны начинают собственные космические программы, а в начале 21 века началось и частное освоение космоса. В 2001 году отправился на орбиту первый космический турист Деннис Тито. В 2004 в рамках соревнования X-Prize совершил суборбитальный полёт (на высоту 112 км) космолёт многоразового использования SpaceShipOne, созданный независимыми разработчиками. В 2005 году начато строительство частных космодромов в Мохаве (США), Рас Аль Хаймах (ОАЭ) и Сингапуре. На ближайшие годы планируется огромное расширение туризма (Virgin Galactic планирует отправить на космические круизы 7000 человек до 2013 года, благодаря доступной цене в 200 тыс. долл.). Владелец крупнейшей сети мотелей Роберт Биголоу планирует открыть первый орбитальный отель Skywalker уже в 2010 году.

Всё это и намного большее станет возможным с появлением нового пути в космос, более эффективного даже, чем современные корабли многоразового использования. С участием NASA разрабатываются планы строительства космического лифта! Ввиду малой силы притяжения Луны, строительство такого лифта из точек Лагранжа (Л-1 или Л-2), где уравновешены силы тяготения Луны, Земли и Солнца, до поверхности Луны возможно даже с помощью сегодняшних технологий! Потребуется лишь кабель из свехпрочного волокна «M5», общим весом 7 тонн, который может быть поднят в космос за один запуск.

Строительство такого лифта на Земле потребует более совершенных материалов, при этом, по расчётам, углеродные нанотрубки будут достаточно прочными для этих целей. Необходимые технологии могут быть разработаны в течение 10—15 лет. Но когда космический лифт будет построен, стоимость вывода грузов на орбиту упадёт до десятков долларов за килограмм. Вероятно, сразу же после появления первого лифта по экватору будут возведены новые, потом их усовершенствуют, и они будут представлять собой уже не несколько тонких лент, а ажурные башни с сооружениями на промежуточных уровнях. Возможно. что через какое-то время на уровне геостационарной орбиты будет создано целое кольцо — гигантская орбитальная космическая станция, подобная описанной А. Кларком в «Одиссее-3000».

Также сейчас серьезно рассматриваются планы (НАСА) по добыче ресурсов на Луне и астероидах. Один из видов полезных ископаемых, добыча которого в космосе может быть экономически оправдана — это гелий-3. На Земле его нет, на Луне он присутствует в избытке (собранный Луной из солнечного ветра за миллиарды лет). А он, в то же время, является отличным топливом для термоядерной энергетики. При этом, чтобы обеспечить всей нашей планете потребление энергии в масштабах 2005 года, потребуется в год доставлять на Землю лишь 100 тонн гелия-3!

Независимо от экономических перспектив, вопросы строительства обитаемых баз на Луне и Марсе остаются на повестке дня. Китай собирается построить первую базу на Луне, Россия и США стремятся к Марсу. Постепенное улучшение технологий делает эти проекты всё более реальными.

Теперь о двигателях. В начале космической эры мы использовали ракетные двигатели. С тех пор предлагалось много альтернатив, но пока они не стали доминирующими. В будущем для полётов внутри Солнечной системы будут использовать ионные двигатели. Уже сейчас они обеспечивают необычайно высокую эффективность. Для подъёма на орбиту могут найти применение лазерные двигатели. Когда космический лифт будет построен, он заменит ракеты в этой области.

Еще пример.В 1958-м году был разработан проект «Орион»: проект космического корабля, взлетающего с поверхности Земли с помощью взрывов ядерных микробомб. Но запрет на взрыв ядерных устройств в атмосфере, вступивший в силу в 1963 году, положил конец этому проекту. В данный момент существует проект космического корабля подобного типа «Прометей», который планируется отправить на Марс.

Также для полёта к звёздам могут быть использованы атомные и фотонные двигатели, позволяющие путешествовать на околосветовых скоростях. Однако, если это физически возможно, то Сверхразум будущего наверняка найдёт способ обхода светового барьера, например, за счёт использования червоточин, сжатия пространства или других способов.

Тут надо заметить, что вряд ли простое открытие, изучение или колонизация новых миров останутся важными для сверхцивилизаций. Ведь компьютерные технологии сделают возможной симуляцию всего богатства возможностей триллионов звёздных систем в рамках компьютеров-генераторов виртуальной реальности. Первый шаг на этом пути будет сделан в ближайшие годы с выходом компьютерной игры Spore. Поэтому, вероятно, что отношение Сверхразума к далёким звёздам будет более прагматичным.

Прежде чем что-либо использовать, надо до этого долететь. Весьма вероятно, что эту задачу возьмут на себя так называемые зонды Фон-Неймана: разумные самовоспроизводящиеся корабли-автоматы, способные, долетев до цели, изучить её, передать информацию и создать сотни своих копий, которые будут отправлены к новым звёздам. Подобная децентрализация может оказаться намного эффективнее романтичных звёздных экспедиций homo sapiens с роботами-помошниками, описываемых научной фантастикой.

Развитие ракетостроения закладывает исследовательскую и зкспериментальную базу для будущего, скорее всего, постсингулярного сверхтехнологического прорыва в ближний, а затем и в дальний космос. Но каковы перспективы для жизни людей в космосе? Мы видим три кардинально различные возможности: терраформинг, адаптация человека к условиям космоса и перестройка космической материи в компьютрониум. Рассмотрим их все.

Уже сейчас существуют проекты терраформинга Марса. Перестройка поверхности других планеты может быть осуществлена с помощью искусственных микроорганизмов или нанороботов, создающих атмосферу, защитный слой озона, почву, реки и моря... Сверхразум сможет даже создать устройство — назовем его условно «Генезис» — способное сделать планету обитаемой в течение нескольких дней или месяцев.

Однако, возможна и другая альтернатива: развитие автотрофности человека, его самодостаточности и независимости от окружающей среды. Достижимые с помощью нанотехнологий изменения сделают возможной жизнь человека (как в физическом теле, так и внутри компьютерных систем) в условиях вакуума и сверхвысоких давлений, сверхвысоких радиации и гравитации, сверхнизких или сверхвысоких температур, то есть, практически везде, кроме, разве что, Солнца.

Если же человек откажется от привычных нам форм существования, то самым эффективным сценарием может оказаться разборка планет солнечной системы и перестройка всей материи в сверхмощные компьютеры, объединённые в единую сеть. Гипотетическое вещество, обеспечивающее максимальную вычислительную мощность на единицу массы называется компьютрониум (computronium). Если отказаться от идеи создать в космосе комфортную для человека среду, то даже существование внутри Солнца может оказаться возможным для Сверхразума: ведь везде, где могут существовать упорядоченные структуры, могут и идти вычисления, а значит — существовать сознание. Любопытно, что, говоря о пределах вычислительной мощности, учёные обычно описывают шары раскалённой плазмы — объекты, весьма напоминающие внутренность Солнца.

Какими бы путями ни шло освоение космоса, постчеловечество не откажется от космической экспансии. Ведь Сверхразум не является имманентно планетарным. Ему чуждо это разделение, поскольку физических ограничений на жизнь в космосе для него нет. И он обязательно будет заниматься космическим мегастроительством, превращать косную космическую материю в разумную.

Возможно, это произойдет так. После освоения планет солнечной системы мы построим увеличивающую наши территориальные возможности мегаконструкцию, например, гигантские космические города. Поскольку мы ожидаем развитие самых различных типов постлюдей, то примерно в этот часть постличностей будет преобразовывать ближайшие к Солнцу (и более богатые солнечной энергией) планеты в «мозги-матрёшки», другая же, более похожая на своих предков (то есть, нас), возможно, будет занята строительством мега-миров (таких как «мир-кольцо») между орбитами Земли и Марса. Газовые гиганты будут разобраны, а составляющее их вещество использовано для наших целей. Через какое-то время, чтобы максимально эффективно использовать энергию Солнца, вокруг Солнечной системы будет воздвигнута сфера Дайсона.

В более далёком будущем Сверхразум займётся галактическими проектами. Такими, как добыча энергии из черных дыр, подъем вещества из активных звёзд, включение и выключение звёзд, создание червоточин в пространстве для преодоления светового барьера.

А когда Вселенский Разум исчерпает возможности нашего Универсума, придет время создания новых дочерних вселенных. Практическая ценность дочерних вселенных в том, чтобы обеспечить действительно бесконечное существование разума, перенося его из умирающих вселенных во вновь создаваемые. Однако, согласно некоторым моделям, бесконечно долгое субъективное существование можно обеспечить и в рамках нашей вселенной.

Кибернетика

Произойдет переход от ныне существующих планарных структур к объемным микросхемам, размеры активных элементов уменьшаться до размеров молекул. Рабочие частоты компьютеров достигнут терагерцовых величин. Получат распространение схемные решения на нейроноподобных элементах. Появится быстродействующая долговременная память на белковых молекулах, емкость которой будет измеряться терабайтами. Станет возможным "переселение" человеческого интеллекта в компьютер. Прогнозируемый срок реализации: первая - вторая четверть XXI века.

Институтом Молекулярного Производства (IMM) разработан предварительный дизайн наноманипулятора с атомарной точностью. Как только будет получена система "нанокомпьютер - наноманипулятор" (эксперты прогнозируют это в 2010-2020 гг.), можно будет программно произвести еще один такой же комплекс - он соберет свой аналог по заданной программе, без непосредственного вмешательства человека. Бактерии, используя репликативные свойства ДНК, способны развиваться за считанные часы от нескольких особей до миллионов. Таким образом, получение ассемблеров в массовом масштабе не потребует никаких издержек со стороны, кроме обеспечения их энергией и сырьем.

На основе системы "нанокомпьютер - наноманипулятор" можно будет организовать сборочные автоматизированные комплексы, способные собирать любые макроскопические объекты по заранее снятой либо разработанной трехмерной сетке расположения атомов. Фирма Xerox в настоящее время ведет интенсивные исследования в области нанотехнологий, что наводит на мысль о ее стремлении создать в будущем дубликаторы материи. Комплекс роботов будет разбирать на атомы исходный объект, а другой комплекс будет создавать копию, идентичную, вплоть до отдельных атомов, оригиналу (эксперты прогнозируют это в 2020-2030 гг.). Это позволит упразднить имеющийся в настоящее время комплекс фабрик, производящих продукцию с помощью "объемной" технологии, достаточно будет спроектировать в компьютеризированной системе любой товар - и он будет собран и размножен сборочным комплексом.

Станет возможным автоматическое строительство орбитальных систем, самособирающихся колоний на Луне и Марсе, любых строений в мировом океане, на поверхности земли и в воздухе (эксперты прогнозируют это в 2050 гг.). Возможность самосборки может привести к решению глобальных вопросов человечества: проблемы нехватки пищи, жилья и энергии. Благодаря нанотехнологиям существенно изменится конструирование машин и механизмов - многие части упростятся вследствие новых технологий (разработок) сборки, многие станут ненужными. Это позволит конструировать машины и механизмы, ранее недоступные человеку из-за отсутствия технологий сборки и конструирования. Эти механизмы будут состоять, по сути дела, из одной очень сложной детали.

С помощью механоэлектрических нанопреобразователей можно будет преобразовывать любые виды энергии с большим КПД и создать эффективные устройства для получения электричества из солнечного излучения с КПД около 90%. Утилизация отходов и глобальный контроль за системами типа "recycling" позволит существенно увеличить сырьевые запасы человечества. Станут возможными глобальный экологический контроль , погодный контроль благодаря системе взаимодействующих нанороботов, работающих синхронно.

Биотехнологии и компьютерная техника, вероятно, получат большее развитие благодаря нанотехнологиям. С развитием наномедицинских роботов станет возможным отдаление человеческой смерти на неопределенный срок. Также не будет проблем с перестройкой человеческого тела для качественного увеличения естественных способностей. Возможно также обеспечение организма энергией, независимо от того, употреблялось что-либо в пищу или нет.

Компьютерная техника трансформируется в единую глобальную информационную сеть огромной производительности, причем каждый человек будет иметь возможность быть терминалом - через непосредственный доступ к головному мозгу и органам чувств. Область материаловедения существенно изменится - появятся "умные" материалы, способные к мультимедиа-общению с пользователем. Также появятся материалы сверхпрочные, сверхлегкие и негорючие.

Что касается сырьевой проблемы, то для постройки большинства объектов нанороботы будут использовать несколько самых распространенных типов атомов: углерод, водород, кремний, азот, кислород, и др. в меньшем количестве. С освоением человечеством других планет проблема сырьевого снабжения будет решена.

Таким образом, на основании прогнозов, нанотехнологии обещают радикальное преобразование как современного производства и связанных с ним технологий, так и человеческой жизни в целом. Нанотехнологии произведут такую же революцию в манипулировании материей, какую произвели компьютеры в манипулировании информацией. Они повлияют на мир больше, чем открытие электричества.

Отношение общества к нанотехнологиям

Прогресс в области нанотехнологий вызвал определенный общественный резонанс.

Отношение общества к нанотехнологиям изучалось ВЦИОМ и европейской службой «Евробарометр».

Ряд исследователей указывают на то, что негативное отношение к нанотехнологии у неспециалистов может быть связано с религиозностью, а также из-за опасений, связанных с токсичностью наноматериалов.

Реакция мирового сообщества на развитие нанотехнологий

C 2005 года функционирует организованная CRN международная рабочая группа, изучающая социальные последствия развития нанотехнологий.

В октябре 2006 года Международным Советом по нанотехнологиям выпущена обзорная статья, в которой, в частности, говорилось о необходимости ограничения распространения информации по нанотехнологическим исследованиям в целях безопасности.

Компания «Гринпис» требует полного запрета исследований в области нанотехнологий.

Тема последствий развития нанотехнологий становится объектом философских исследований. Так, о перспективах развития нанотехнологий говорилось на прошедшей в 2007 году международной футурологической конференции Transvision, организованной WTA.

Реакция российского общества на развитие нанотехнологий


Природа непрерывна, а любое определение требует установления каких-то границ. Поэтому формулировка определений - достаточно неблагодарное занятие. Тем не менее это надо делать, так как четкое определение позволяет отделить одно явление от другого, выявить существенные различия между ними и таким образом глубже понять сами явления. Поэтому целью этого эссе является попытка разобраться в значении модных сегодня терминов c приставкой «нано» (от греческого слова «карлик») - «нанонаука», «нанотехнология», «нанообъект», «наноматериал».

Несмотря на то что эти вопросы с той или иной степенью глубины неоднократно обсуждались в специальной и научно-популярной литературе, анализ литературы и личный опыт показывают, что до сих пор в широких научных кругах, не говоря уже о ненаучных, нет четкого понимания как самой проблемы, так и определений. Именно поэтому мы постараемся дать определения всем перечисленным выше терминам, акцентируя внимание читателя на значении базового понятия «нанообъект». Мы приглашаем читателя к совместному размышлению о том, существует ли нечто, принципиально отличающее нанообъекты от их более крупных и более мелких «собратьев», «населяющих» окружающий нас мир. Более того, мы предлагаем ему самому принять участие в серии мысленных экспериментов по конструированию наноструктур и их синтезу. Мы также попытаемся продемонстрировать, что именно в наноразмерном интервале происходит изменение характера физических и химических взаимодействий, причем происходит это именно на том же участке размерной шкалы, где проходит граница между живой и неживой природой.

Но сначала - откуда всё это появилось, почему была введена приставка «нано», что является определяющим при отнесении материалов к наноструктурам, почему нанонаука и нанотехнологии выделяются в отдельные области, что в этом выделении относится (и относится ли) к действительно научным основам?

Что такое «нано» и откуда всё началось

Это приставка, которая показывает, что исходная величина должна быть уменьшена в миллиард раз, т. е. поделена на единицу с девятью нулями - 1 000 000 000. Например, 1 нанометр - это миллиардная часть метра (1 нм = 10 –9 м). Чтобы представить себе, насколько мал 1 нм, выполним следующий мысленный эксперимент (рис. 1). Если мы уменьшим диаметр нашей планеты (12 750 км = 12,75 × 10 6 м ≈ 10 7 м) в 100 миллионов (10 8) раз, то получим примерно 10 –1 м. Это размер, приблизительно равный диаметру футбольного мяча (стандартный диаметр футбольного мяча - 22 см, но в наших масштабах такая разница несущественна; для нас 2,2 × 10 –1 м ≈ 10 –1 м). Теперь уменьшим диаметр футбольного мяча в те же 100 миллионов (10 8) раз, и вот только теперь получим размер наночастицы, равный 1 нм (приблизительно диаметр углеродной молекулы фуллерена C 60 , по своей форме похожего на футбольный мяч - см. рис. 1).

Примечательно, что приставка «нано» использовалась в научной литературе довольно давно, но для обозначения далеко не нанообъектов. В частности для объектов, размер которых в миллиарды раз превышает 1 нм - в терминологии динозавров. Нанотиранозаврами (nanotyrranus ) и нанозаврами (nanosaurus ) называются карликовые динозавры, размеры которых составляют соответственно 5 и 1,3 м. Но они действительно «карлики» по сравнению с другими динозаврами, размеры которых превышают 10 м (до 50 м), а вес может достигать 30–40 т и более. Этот пример подчеркивает, что сама по себе приставка «нано» не несет физического смысла, а лишь указывает на масштаб.

Но теперь с помощью этой приставки обозначают новую эру в развитии технологий, называемых иногда четвертой промышленной революцией, - эру нанотехнологий.

Очень часто считается, что начало нанотехнологической эре положил в 1959 г. Ричард Фейнман в лекции "There"s Plenty of Room at the Bottom " («Там внизу - много места»). Основной постулат этой лекции заключался в том, что с точки зрения фундаментальных законов физики автор не видит никаких препятствий к работе на молекулярном и атомном уровнях, манипулировании отдельными атомами или молекулами. Фейнман говорил, что с помощью определенных устройств можно сделать еще меньшие по размеру устройства, которые в свою очередь способны сделать еще меньшие устройства, и так далее вплоть до атомного уровня, т. е. при наличии соответствующих технологий можно манипулировать отдельными атомами.

Справедливости ради, однако, следует отметить, что Фейнман не первый это придумал. В частности, идея создания последовательно уменьшающихся в размере манипуляторов была высказана еще в 1931 г. писателем Борисом Житковым в его фантастическом рассказе «Микроруки». Не можем удержаться и не привести небольшие цитаты из этого рассказа, чтобы дать читателю самому по достоинству оценить прозрение писателя:

«Я долго ломал голову и вот к чему пришел: я сделаю маленькие руки, точную копию моих - пусть они будут хоть в двадцать, тридцать раз меньше, но на них будут гибкие пальцы, как мои, они будут сжиматься в кулак, разгибаться, становиться в те же положения, что и мои живые руки. И я их сделал...
Но мне вдруг ударила в голову мысль: а ведь я могу сделать микроруки к моим маленьким рукам. Я могу для них сделать такие же перчатки, как я сделал для своих живых рук, такой же системой соединить их с ручками в десять раз меньше моих микрорук, и тогда... у меня будут настоящие микроруки, уже в двести раз они будут мельчить мои движения. Этими руками я ворвусь в такую мелкоту жизни, которую только видели, но где еще никто не распоряжался своими руками. И я взялся за работу...
Я хотел сделать истинные микроруки, такие, которыми я мог бы хватать частицы вещества, из которых создана материя, те невообразимо мелкие частицы, которые видны только в ультрамикроскоп. Я хотел пробраться в ту область, где ум человеческий теряет всякое представление о размерах - кажется, что уж нет никаких размеров, до того всё невообразимо мелко».

Но дело не только в литературных предсказаниях. То, что теперь называют нанообъектами, нанотехнологиями, если угодно, человек давно использовал в своей жизни. Один из наиболее ярких примеров (в прямом и переносном смыслах) - это разноцветные стекла. Например, созданный еще IV веке н. э. кубок Ликурга, хранящийся в Британском музее, при освещении снаружи - зеленый, но если освещать его изнутри - то он пурпурно-красный. Как показали недавние исследования с помощью электронной микроскопии, этот необычный эффект обусловлен наличием в стекле наноразмерных частиц золота и серебра. Поэтому можно смело утверждать, что кубок Ликурга сделан из нанокомпозитного материала.

Как выясняется теперь, в Средние века металлическую нанопыль часто добавляли в стекло для изготовления витражей. Вариации окраски стекол зависят от различий добавляемых частиц - природы используемого металла и размера его частиц. Недавно было установлено, что эти стекла обладают еще и бактерицидными свойствами, т. е. не только дают красивую игру света в помещении, но и дезинфицируют среду.

Если рассматривать историю развития науки в историческом плане, то можно выделить, с одной стороны, общий вектор - проникновение естественных наук «вглубь» материи. Движение по этому вектору определяется развитием средств наблюдения. Сначала люди изучали обычный мир, для наблюдения которого не надо было особых приборов. При наблюдениях на этом уровне заложены основы биологии (классификация мира живого, К. Линней и др.), была создана теория эволюции (Ч. Дарвин, 1859 г.). Когда появился телескоп, люди смогли проводить астрономические наблюдения (Г. Галилей, 1609 г.). Результатом этого явились закон Всемирного тяготения и классическая механика (И. Ньютон, 1642–1727 гг.). Когда появился микроскоп Левенгука (1674 г.), люди проникли в микромир (размерный интервал 1 мм - 0,1 мм). Сначала это было только созерцание мелких, не видимых глазом организмов. Лишь в конце XIX века Л. Пастер первым выяснил природу и функции микроорганизмов. Примерно в это же время (конец XIX - начало XX века) происходила революция в физике. Ученые стали проникать внутрь атома, изучать его строение. Опять-таки это было связано с появлением новых методов и инструментов, в качестве которых стали применять мельчайшие частицы вещества. В 1909 г. используя альфа-частицы (ядра гелия, имеющие размер порядка 10 –13 м) Резерфорду удалось «увидеть» ядро атома золота. Созданная на основе этих опытов планетарная модель атома Бора-Резерфорда дает наглядный образ огромности «свободного» места в атоме, вполне сравнимого с космической пустотой Солнечной системы. Именно пустоты таких порядков имел в виду Фейнман в своей лекции. При помощи тех же α-частиц в 1919 г. Резерфордом была осуществлена первая ядерная реакция по превращению азота в кислород. Так физики вошли в пико- и фемторазмерные интервалы , и понимание строения материи на атомном и субатомном уровнях привело в первой половине прошлого века к созданию квантовой механики.

Мир потерянных величин

Исторически случилось так, что на размерной шкале (рис. 2) были «перекрыты» практически все размерные области исследований, кроме области наноразмеров. Однако мир не без прозорливых людей. Еще в начале XX века В. Оствальд опубликовал книгу «Мир обойденных величин», в которой шла речь о новой в то время области химии - коллоидной химии, которая и имела дело именно с частицами нанометровых размеров (хотя тогда еще этот термин не употреблялся). Уже в этой книге он отмечал, что дробление материи в какой-то момент приводит к новым свойствам, что от размера частицы зависят свойства и всего материала.

В начале ХХ века еще не умели «видеть» частицы такого размера, так как они лежат ниже пределов разрешимости светового микроскопа. Поэтому не случайно одной из начальных вех появления нанотехнологий считается изобретение М. Кноллем и Э. Руска в 1931 г. электронного микроскопа. Только после этого человечество смогло «видеть» объекты субмикронных и нанометровых размеров. И тогда всё становится на свои места - основной критерий, по которому человечество принимает (или не принимает) какие-либо новые факты и явления, выражен в словах Фомы неверующего: «Пока не увижу, не поверю».

Следующий шаг был сделан в 1981 г. - Г. Бинниг и Г. Рорер создали сканирующий туннельный микроскоп, что дало возможность не только получать изображения отдельных атомов, но и манипулировать ими. То есть была создана технология, о которой говорил в своей лекции Р. Фейнман. Вот именно тогда и наступила эра нанотехнологий.

Отметим, что и здесь мы опять имеем дело с одной и той же историей. Опять потому, что для человечества вообще свойственно не обращать внимания на то, что хоть немного, но обгоняет свое время. Вот и на примере нанотехнологий выясняется, что ничего нового не открыли, просто стали лучше понимать то, что происходит вокруг, то, что даже в древности люди уже делали, пусть и неосознанно, вернее, осознанно (знали, что хотели получить), но не понимая физики и химии явления. Другой вопрос, что наличие технологии еще далеко не означает понимания сути процесса. Сталь умели варить давно, но понимание физических и химических основ сталеварения пришло значительно позже. Тут можно вспомнить, что секрет дамасской стали не открыт до сих пор. Здесь уже другая ипостась - знаем, что надо получить, но не знаем, как. Так что взаимоотношения науки и технологии далеко не всегда просты.

Кто же первым занялся наноматериалами в их современном понимании? В 1981 г. американский ученый Г. Глейтер впервые использовал определение «нанокристаллический». Он сформулировал концепцию создания наноматериалов и развил ее в серии работ 1981–1986 гг., ввел термины «нанокристаллические», «наноструктурные», «нанофазные» и «нанокомпозитные» материалы. Главный акцент в этих работах был сделан на решающей роли многочисленных поверхностей раздела в наноматериалах как основе для изменения свойств твердых тел.

Одним из важнейших событий в истории нанотехнологии и развития идеологии наночастиц явилось также открытие в середине 80-х - начале 90-х годов ХХ века наноструктур углерода - фуллеренов и углеродных нанотрубок, а также открытие уже в XXI веке способа получения графена.

Но вернемся к определениям.

Первые определения: всё очень просто

Сначала всё было очень просто. В 2000 г. президент США Б. Клинтон подписал документ «National Nanotechnology Initiative » («Национальная нанотехнологическая инициатива»), в котором приведено следующее определение: к нанотехнологиям относятся создание технологий и исследования на атомном, молекулярном и макромолекулярном уровнях в пределах примерно от 1 до 100 нм для понимания фундаментальных основ явлений и свойств материалов на уровне наноразмеров, а также создание и использование структур, оборудования и систем, обладающих новыми свойствами и функциями, определяемыми их размерами.

В 2003 г. правительство Великобритании обратилось в Royal Society и Royal Academy of Engineering с просьбой высказать свое мнение о необходимости развития нанотехнологий, оценить преимущества и проблемы, которые может вызвать их развитие. Такой доклад под названием «Nanoscience and nanotechnologies: opportunities and uncertainties » появился в июле 2004 г., и в нем, насколько нам известно, впервые были даны отдельно определения нанонауки и нанотехнологий:

Нанонаука - это исследование явлений и объектов на атомарном, молекулярном и макромолекулярном уровнях, характеристики которых существенно отличаются от свойств их макроаналогов.
Нанотехнологии - это конструирование, характеристика, производство и применение структур, приборов и систем, свойства которых определяются их формой и размером на нанометровом уровне.

Таким образом, под термином «нанотехнология» понимается совокупность технологических приемов, позволяющая создавать нанообъекты и/или манипулировать ими. Остается только дать определение нанообъектам. Но вот это, оказывается, не так просто, поэтому бОльшая часть статьи посвящена именно этому определению.

Для начала приведем формальное определение, наиболее широко используемое в настоящее время:

Нанообъектами (наночастицами ) называются объекты (частицы) с характерным размером в 1–100 нанометров хотя бы по одному измерению.

Вроде бы всё хорошо и понятно, неясно только, почему дано столь жесткое определение нижнего и верхнего пределов в 1 и 100 нм? Похоже, что выбрано это волюнтаристски, особенно подозрительно назначение верхнего предела. Почему не 70 или 150 нм? Ведь, учитывая всё многообразие нанообъектов в природе, границы наноучастка размерной шкалы могут и должны быть существенно размыты. И вообще в природе проведение любых точных границ невозможно - одни объекты плавно перетекают в другие, и происходит это в определенном интервале, а не в точке.

Прежде чем говорить о границах, попробуем понять, какой физический смысл содержится в понятии «нанообъект», почему его надо выделять отдельной дефиницией?

Как уже отмечалось выше, только в конце XX века начало появляться (вернее, утверждаться в умах) понимание того, что наноразмерный интервал строения материи всё-таки имеет свои особенности, что на этом уровне вещество обладает иными свойствами, которые не проявляются в макромире. Очень трудно переводить некоторые английские термины на русский язык, но в английском есть термин «bulk material », что приблизительно можно перевести как «большое количество вещества», «объемное вещество», «сплошная среда». Так вот некоторые свойства «bulk materials » при уменьшении размера составляющих его частиц могут начать изменяться при достижении определенного размера. В этом случае говорят, что происходит переход к наносостоянию вещества, наноматериалам.

А происходит это потому, что при уменьшении размера частиц доля атомов, расположенных на их поверхности, и их вклад в свойства объекта становятся существенными и растут с дальнейшим уменьшением размеров (рис. 3).

Но почему увеличение доли поверхностных атомов существенно влияет на свойства частиц?

Так называемые поверхностные явления известны давно - это поверхностное натяжение, капиллярные явления, поверхностная активность, смачивание, адсорбция, адгезия и др. Вся совокупность этих явлений обусловлена тем, что силы взаимодействия между частицами, составляющими тело, не скомпенсированы на его поверхности (рис. 4). Другими словами, атомы на поверхности (кристалла или жидкости - это не важно) находятся в особых условиях. Например, в кристаллах силы, заставляющие их находиться в узлах кристаллической решетки, действуют на них только снизу. Поэтому свойства этих «поверхностных» атомов отличаются от свойств этих же атомов в объеме.

Так как в нанообъектах число поверхностных атомов резко возрастает (рис. 3), то их вклад в свойства нанообъекта становится определяющим и растет с дальнейшим уменьшением размера объекта. Именно это и является одной из причин проявления новых свойств на наноуровне.

Другой причиной обсуждаемого изменения свойств является то, что на этом размерном уровне начинает уже проявляться действие законов квантовой механики, т. е. уровень наноразмеров - это уровень перехода, именно перехода, от царствования классической механики к царствованию механики квантовой. А как хорошо известно, самое непредсказуемое - это именно переходные состояния.

К середине XX века люди научились работать как с массой атомов, так и с одним атомом.

Впоследствии стало очевидно, что «маленькая кучка атомов» - это что-то иное, не совсем похожее ни на массу атомов, ни на отдельный атом.

Впервые, вероятно, ученые и технологи вплотную столкнулись с этой проблемой в физике полупроводников. В своем стремлении к миниатюризации они дошли до таких размеров частиц (несколько десятков нанометров и менее), при которых их оптические и электронные свойства стали резко отличаться от таковых для частиц «обычных» размеров. Именно тогда стало окончательно понятно, что шкала «наноразмеров» - это особая область, отличная от области существования макрочастиц или сплошных сред.

Поэтому в приведенных выше определениях нанонауки и нанотехнологий наиболее существенным является указание на то, что «настоящее нано» начинается с момента появления новых свойств веществ, связанных с переходом к этим масштабам и отличающихся от свойств объемных материалов. То есть существеннейшим и важнейшим качеством наночастиц, основным отличием их от микро- и макрочастиц является появление у них принципиально новых свойств, не проявляющихся при других размерах. Мы уже приводили литературные примеры, используем этот прием еще раз для того, чтобы наглядно показать и подчеркнуть различия между макро-, микро- и нанообъектами.

Вернемся к литературным примерам. Часто в качестве «раннего» нанотехнолога упоминается герой повести Лескова Левша. Однако это неправильно. Основное достижение Левши - это то, что он выковал маленькие гвозди [«я мельче этих подковок работал: я гвоздики выковывал, которыми подковки забиты, там уже никакой мелкоскоп взять не может »]. Но эти гвозди, хоть и очень маленькие, остались гвоздями, не потеряли своей основной функции - удерживать подкову. Так что пример с Левшой - это пример миниатюризации (если угодно, микроминиатюризации), т. е. уменьшения размеров предмета без изменения его функциональных и других свойств.

А вот уже упоминавшийся рассказ Б. Житкова описывает как раз именно изменение свойств:

«Мне нужно было вытянуть тонкую проволоку - то есть той толщины, какая для моих живых рук была бы как волос. Я работал и глядел в микроскоп, как протягивали медь микроруки. Вот тоньше, тоньше - еще осталось протянуть пять раз - и тут проволока рвалась. Даже не рвалась - она рассыпалась, как сделанная из глины. Рассыпалась в мелкий песок. Это знаменитая своей тягучестью красная медь».

Отметим, что в Wikipedia в статье про нанотехнологии как раз увеличение жесткости меди приводится в качестве одного из примеров изменения свойств при уменьшении размеров. (Интересно, откуда узнал про это Б. Житков в 1931 г.?)

Нанобъекты: квантовые плоскости, нити и точки. Наноструктуры углерода

В конце XX века окончательно стало очевидно существование определенной области размеров частиц вещества - область наноразмеров. Физики, уточняя определение нанообъектов, утверждают, что верхний предел наноучастка размерной шкалы совпадает, по всей видимости, с размером проявления так называемых низкоразмерных эффектов или эффекта понижения размерности.

Попытаемся сделать обратный перевод последнего утверждения с языка физиков на общечеловеческий язык.

Мы живем в трехмерном мире. Все окружающие нас реальные предметы имеют те или иные размеры во всех трех измерениях, или, как говорят физики, обладают размерностью 3.

Проведем следующий мысленный эксперимент. Выберем трехмерный, объемный, образец какого-нибудь материала, лучше всего - однородный кристалл. Пусть это будет кубик с длиной ребра в 1 см. Этот образец обладает определенными физическими свойствами, не зависящими от его размеров. Вблизи внешней поверхности нашего образца свойства могут отличаться от таковых в объеме. Однако относительная доля поверхностных атомов мала, и поэтому вкладом поверхностного изменения свойств можно пренебречь (именно это требование означает на языке физиков, что образец объемный ). Теперь разделим кубик пополам - два его характерных размера останутся прежними, а один, пусть это будет высота d , уменьшится в 2 раза. Что произойдет со свойствами образца? Они не изменятся. Повторим этот эксперимент еще раз и измерим интересующее нас свойство. Мы получим тот же результат. Неоднократно повторяя эксперимент, мы наконец дойдем до некоторого критического размера d *, ниже которого измеряемое нами свойство начнет зависеть от размера d . Почему? При d ≤ d * доля вклада поверхностных атомов в свойства становится существенной и будет продолжать расти с дальнейшим уменьшением d.

Физики говорят что при d ≤ d * в нашем образце наблюдается квантово-размерный эффект в одном измерении. Для них наш образец не является больше трехмерным (что для любого обычного человека звучит абсурдно, ведь наше d хоть и мало, но не равно нулю!), его размерность понижена до двух. А сам образец называется квантовой плоскостью, или квантовой ямой, по аналогии с часто употребляемым в физике термином «потенциальная яма».

Если в неком образце d ≤ d * в двух измерениях, то его называют одномерным квантовым объектом, или квантовой нитью, или квантовым проводом. У нуль-мерных объектов, или квантовых точек, d ≤ d * во всех трех измерениях.

Естественно, что критический размер d * не является постоянной величиной для разных материалов и даже для одного материала может существенно варьироваться в зависимости от того, какое из свойств мы измеряли в нашем эксперименте, или, говоря другими словами, какая из критических размерных характеристик физических явлений определяет данное свойство (свободный пробег электронов фононов, длина волны де Бройля, длина диффузии, глубина проникновения внешнего электромагнитного поля или акустических волн и пр.).

Однако оказывается, что при всём многообразии явлений, происходящих в органических и неорганических материалах в живой и неживой природе, величина d * лежит примерно в интервале 1–100 нм. Таким образом, «нанообъект» («наноструктура», «наночастица») - это просто другой вариант термина «квантово-размерная структура». Это объект, у которого d ≤ d * по крайней мере в одном измерении. Это частицы пониженной размерности, частицы с повышенной долей поверхностных атомов. А значит, классифицировать их логичнее всего по степени снижения размерности: 2D - квантовые плоскости, 1D - квантовые нити, 0D - квантовые точки.

Весь спектр сниженных размерностей можно легко объяснить и главное - экспериментально наблюдать на примере углеродных наночастиц.

Открытие наноструктур углерода явилось очень важной вехой в развитии концепции наночастиц.

Углерод - всего лишь одиннадцатый по распространенности в природе элемент, однако благодаря уникальной способности его атомов соединяться друг с другом и образовывать длинные молекулы, включающие в качестве заместителей и другие элементы, возникло громадное множество органических соединений, да и сама Жизнь. Но, даже соединяясь только сам с собой, углерод способен порождать большой набор различных структур с весьма разнообразными свойствами - так называемых аллотропных модификаций. Алмаз, например, является эталоном прозрачности и твердости, диэлектриком и теплоизолятором. Однако графит - идеальный «поглотитель» света, сверхмягкий материал (в определенном направлении), один из лучших проводников тепла и электричества (в плоскости, перпендикулярной вышеназванному направлению). А ведь оба этих материала состоят только из атомов углерода!

Но всё это на макроуровне. А переход на наноуровень открывает новые уникальные свойства углерода. Оказалось, что «любовь» атомов углерода друг к другу настолько велика, что они могут без участия других элементов образовывать целый набор наноструктур, отличающихся друг от друга, в том числе и размерностью. В их число входят фуллерены, графен, нанотрубки, наноконы и т. п. (рис. 5).

Отметим при этом, что наноструктуры углерода можно назвать «истинными» наночастицами, так как в них, как хорошо видно на рис. 5, все составляющие их атомы лежат на поверхности.

Но вернемся к самому графиту. Итак, графит - самая распространенная и термодинамически стабильная модификация элементарного углерода с трехмерной кристаллической структурой, состоящей из параллельных атомных слоев, каждый из которых представляет собой плотную упаковку шестиугольников (рис. 6). В вершинах любого такого шестиугольника расположен атом углерода, а стороны шестиугольников графически отражают прочные ковалентные связи между атомами углерода, длина которых составляет 0,142 нм. А вот расстояние между слоями достаточно велико (0,334 нм), и поэтому связь между слоями достаточно слабая (в этом случае говорят о ван-дер-ваальсовом взаимодействии ).

Такая кристаллическая структура и объясняет особенности физических свойств графита. Во-первых, низкую твердость и способность легко расслаиваться на мельчайшие чешуйки. Так, например, пишут грифели карандашей, графитовые чешуйки которых, отслаиваясь, остаются на бумаге. Во-вторых, уже упоминавшуюся ярко выраженную анизотропию физических свойств графита и прежде всего его электрической проводимости и теплопроводности.

Любой из слоев трехмерной структуры графита можно рассматривать как гигантскую плоскостную структуру, имеющую размерность 2D. Такая двумерная структура, построенная только из атомов углерода, получила название «графен». Получить такую структуру «относительно» легко, во всяком случае, в мысленном эксперименте. Возьмем графитовый карандашный грифель и начнем писать. Высота грифеля d будет уменьшаться. Если хватит терпения, то в какой-то момент величина d сравняется с d *, и мы получим квантовую плоскость (2D).

Долгое время проблема стабильности плоских двумерных структур в свободном состоянии (без подложки) в общем и графена в частности, а также электронные свойства графена были предметом только теоретических исследований. Совсем недавно, в 2004 г., группой физиков во главе с А. Геймом и К. Новосёловым были получены первые образцы графена, что произвело революцию в этой области, так как такие двумерные структуры оказались, в частности, способными проявлять поразительные электронные свойства, качественно отличающиеся от всех прежде наблюдаемых. Поэтому сегодня сотни экспериментальных групп и исследуют электронные свойства графена.

Если свернуть графеновый слой, моноатомный по толщине, в цилиндр таким образом, чтобы гексагональная сетка атомов углерода замкнулась без швов, то мы «сконструируем» одностенную углеродную нанотрубку. Экспериментально можно получать одностенные нанотрубки диаметром от 0,43 до 5 нм. Характерными особенностями геометрии нанотрубок являются рекордные значения удельной поверхности (в среднем ~1600 м 2 /г для одностенных трубок) и отношения длины к диаметру (100 000 и выше). Таким образом, нанотрубки представляют собой 1D нанообъект - квантовые нити.

В экспериментах наблюдались также и многостенные углеродные нанотрубки (рис. 7). Они состоят из коаксиальных цилиндров, вставленных один в другой, стенки которых находятся на расстоянии (около 3,5 Å), близком к межплоскостному расстоянию в графите (0,334 нм). Количество стенок может варьироваться от 2 до 50.

Если же поместить кусок графита в атмосферу инертного газа (гелия или аргона) и затем осветить лучом мощного импульсного лазера или концентрированного солнечного света, то можно испарить материал нашей графитовой мишени (заметим, что для этого температура поверхности мишени должна быть как минимум 2700°C). В таких условиях над поверхностью мишени образуется плазма, состоящая из индивидуальных атомов углерода, которые увлекаются потоком холодного газа, что приводит к охлаждению плазмы и образованию кластеров углерода. Так вот, оказывается, что при определенных условиях кластеризации атомы углерода замыкаются с образованием каркасной сферической молекулы C 60 размерностью 0D (т. е. квантовая точка), уже показанной на рис. 1.

Такое самопроизвольное образование молекулы C 60 в углеродной плазме было обнаружено в совместном эксперименте Г. Крото, Р. Кёрла и Р. Смоли, проведенном в течение десяти дней в сентябре 1985 г. Отошлем любознательного читателя к книге Е. А. Каца «Фуллерены, углеродные нанотрубки и нанокластеры: Родословная форм и идей», подробно описывающей увлекательную историю этого открытия и события, ему предшествующие (с краткими экскурсами в историю науки вплоть до эпохи Возрождения и даже Античности), а также объясняющей мотивацию странного на первый взгляд (и только на первый взгляд) названия новой молекулы - бакминстерфуллерен - в честь архитектора Р. Бакминстера Фуллера (см. также книгу [Пиотровский, Киселев, 2006]).

Впоследствии было обнаружено, что существует целое семейство углеродных молекул - фуллеренов - в форме выпуклых многогранников, состоящих только из шестиугольных и пятиугольных граней (рис. 8).

Именно открытие фуллеренов явилось своеобразным волшебным «золотым ключиком» в новый мир нанометровых структур из чистого углерода, вызвало взрыв работ в этой области. К настоящему времени обнаружено большое количество различных углеродных кластеров с фантастическим (в прямом смысле этого слова!) разнообразием структуры и свойств.

Но вернемся к наноматериалам.

Наноматериалами называются материалы, структурными единицами которых являются нанообъекты (наночастицы). Образно говоря, здание наноматериала сложено из кирпичей-нанообъектов. Поэтому классифицировать наноматериалы продуктивнее всего по размерности как самого образца наноматериала (внешних размеров матрицы), так и по размерности составляющих его нанообъектов. Наиболее подробная классификация такого рода приведена в работе . Представленные в этой работе 36 классов наноструктур описывают всё многообразие наноматериалов, некоторые из которых (как указанные выше фуллерены или углеродный наногорох) уже успешно синтезированы, а некоторые всё еще ждут своей экспериментальной реализации.

Почему всё не так просто

Итак, мы можем строго определить интересующие нас понятия «нанонаука», «нанотехнология» и «наноматериалы» только в том случае, если понимаем, что такое «нанобъект».

«Нанообъект» же, в свою очередь, имеет два определения. Первое, более простое (технологическое): это объекты (частицы) с характерным размером приблизительно в 1–100 нанометров хотя бы по одному измерению. Второе определение, более научное, физическое: объект с пониженной размерностью (у которого d ≤ d * по крайней мере в одном измерении).

Других определений, насколько нам известно, не имеется.

Не может не бросаться в глаза, однако, тот факт, что и научное определение обладает серьезным недостатком. А именно: в нем, в отличие от технологического, определяется только верхний предел наноразмеров. Должен ли существовать нижний предел? По нашему мнению, конечно, должен. Первая причина существования нижнего предела непосредственно вытекает из физической сущности научного определения нанообъекта, так как большинство обсуждавшихся выше эффектов понижения размерности являются эффектами квантового ограничения, или явлениями резонансной природы. Иными словами, они наблюдаются при совпадении характерных длин эффекта и размеров объекта, т. е. не только для d d *, что уже обсуждалось, но в то же время только если размер d превышает некий нижний предел d ** (d ** ≤ d d *). При этом очевидно, что величина d* может варьироваться для разных явлений, но должна превышать размеры атомов.

Проиллюстрируем сказанное на примере соединений углерода. Полициклические ароматические углеводороды (ПАУ) типа нафталина, бензпирена, хризена и т. п. являются формально аналогами графена. Более того, самый большой из известных ПАУ имеет общую формулу C 222 H 44 и содержит 10 бензольных колец по диагонали. Однако они не обладают теми удивительными свойствами, которыми обладает графен, и их нельзя рассматривать как наночастицы. То же самое относится и к наноалмазам: до ~ 4–5 нм это наноалмазы, но близко к этим границам, и даже заходя за них, подходят высшие диамандоиды (аналоги адамантана, имеющие конденсированные алмазные ячейки в качестве основы структуры).

Итак: если в пределе размер объекта по всем трем измерениям будет равен размеру атома, то, например, кристалл, сложенный из таких 0-мерных объектов будет не наноматериалом, а обычным атомарным кристаллом. Это очевидно. Как очевиден и тот факт, что количество атомов в нанообъекте должно всё-таки превосходить единицу. Если у нанобъекта все три значения d меньше, чем d**, он престает им быть. Такой объект надо описывать на языке описания индивидуальных атомов.

А если не все три размера, а только один, например? Остается ли такой объект нанообъектом? Конечно, да. Таким объектом является, например, уже не раз упоминавшийся графен. То, что характерный размер графена в одном измерении равен диаметру атома углерода, не лишает его свойств наноматериала. И свойства эти абсолютно уникальны. Были измерены проводимость, эффект Шубникова - де Гааза, квантовый эффект Холла в графеновых пленках атомарной толщины. Эксперименты подтвердили, что графен - полупроводник с нулевой шириной запрещенной зоны, при этом в точках соприкосновения валентной зоны и зоны проводимости энергетический спектр электронов и дырок линеен как функция волнового вектора. Такого рода спектром обладают частицы с нулевой эффективной массой, в частности фотоны, нейтрино, релятивистские частицы. Отличие фотонов и безмассовых носителей в графене состоит в том, что последние являются фермионами, и они заряжены. В настоящее время аналогов для этих безмассовых заряженных фермионов Дирака среди известных элементарных частиц нет. Сегодня графен представляет огромный интерес как для проверки множества теоретических предположений из областей квантовой электродинамики и теории относительности, так и для создания новых устройств наноэлектроники, в частности баллистического и одноэлектронного транзисторов.

Для нашей дискуссии весьма важно, что наиболее близким к понятию нанообъекта является размерный участок, на котором реализуются так называемые мезоскопические явления. Это минимальный размерный участок, для которого резонно говорить не о свойствах индивидуальных атомов или молекул, а о свойствах материала в целом (например, при определении температуры, плотности или проводимости материала). Мезоскопические размеры как раз попадают в интервал 1–100 нм. (Приставка «мезо-» происходит от греческого слова «средний», промежуточный - между атомарными и макроскопическими размерами.)

Всем известно, что психология занимается поведением индивидуумов, а социология - поведением больших групп людей. Так вот, отношения в группе из 3–4 человек можно по аналогии охарактеризовать как мезоявления. Точно так же, как уже упоминалось выше, маленькая кучка атомов - это что-то не похожее ни на «кучу» атомов, ни на отдельный атом.

Тут следует отметить еще одну важную особенность свойств нанообъектов. Несмотря на то, что в отличие от графена углеродные нанотрубки и фуллерены являются формально 1- и 0-мерными объектами соответственно, по существу это не совсем так. Вернее, так и не так одновременно. Дело в том, что нанотрубка - это тот же графеновый 2D одноатомный слой, свернутый в цилиндр. А фуллерен - это углеродный 2D слой одноатомной толщины, замкнутый по поверхности сферы. То есть свойства нанообъектов существенно зависят не только от их размеров, но и от топологических характеристик - попросту говоря, от их формы.

Итак, правильное научное определение нанообъекта должно быть следующим:

это объект, у которого хотя бы один из размеров ≤ d *, при этом хотя бы один из размеров превышает d**. Иными словами, объект достаточно велик, чтобы обладать макросвойствами вещества, но в то же время характеризуется пониженной размерностью, т. е. хотя бы по одному из измерений достаточно мал, чтобы значения этих свойств сильно отличались от соответствующих свойств макрообъектов из этого же вещества, существенно зависели от размеров и формы объекта. При этом точные значения размеров d * и d** могут варьироваться не только от вещества к веществу, но и для разных свойств одного и того же вещества.

То, что эти соображения отнюдь не являются схоластическими (типа «со скольких песчинок начинается куча?»), а имеют глубокий смысл для понимания единства науки и непрерывности окружающего нас мира, становится очевидным, если мы обратим свой взор на нанообъекты органического происхождения.

Нанообъекты органической природы - супрамолекулярные структуры

Выше мы рассматривали только неорганические относительно однородные материалы, и уже там всё было не так просто. Но на Земле есть колоссальное количество материи, которую не просто трудно, а нельзя назвать однородной. Речь идет о биологических структурах и вообще о Живой материи.

В «Национальной нанотехнологической инициативе» в качестве одной из причин особого интереса к области наноразмеров указывается:

так как системная организация материи на наноуровне является ключевой особенностью биологических систем, нанонаука и технология дадут возможность включать в клетки искусственные компоненты и ансамбли, создавая тем самым новые структурно организованные материалы на основе подражания методам самосборки в природе.

Попробуем теперь разобраться, какой смысл имеет понятие «наноразмер» в приложении к биологии, памятуя о том, что при переходе к этому размерному интервалу должны принципиально или резко изменяться свойства. Но сначала вспомним, что к нанообласти можно подойти двумя путями: «сверху вниз» (дробление) или «снизу вверх» (синтез). Так вот, движение «снизу вверх» для биологии представляет собой не что иное, как образование из отдельных молекул биологически активных комплексов.

Рассмотрим коротко химические связи, которые определяют строение и форму молекулы. Первой и самой сильной является ковалентная связь, характеризующаяся строгой направленностью (только от одного атома к другому) и определенной длиной, которая зависит от типа связи (одинарная, двойная, тройная и т. п.). Именно ковалентные связи между атомами определяют «первичную структуру» любой молекулы, т. е. какие атомы и в каком порядке связаны друг с другом.

Но существуют и другие типы связей, определяющие то, что называется вторичной структурой молекулы, ее форму. Это прежде всего водородная связь - связь между полярным атомом и атомом водорода. Она ближе всего к ковалентной связи, так как также характеризуется определенной длиной и направленностью. Однако эта связь слабая, ее энергия на порядок ниже энергии ковалентной связи. Остальные типы взаимодействий являются ненаправленными и характеризуются не длиной образуемых связей, а скоростью убывания энергии связи с увеличением расстояния между взаимодействующими атомами (дальнодействием). Ионная связь является дальнодействующим взаимодействием, ван-дер-ваальсовы взаимодействия являются короткодействующими. Так, если расстояние между двумя частицами увеличивается в r раз, то в случае ионной связи притяжение снизится до 1/r 2 от начального значения, в случае уже не раз упоминавшегося ван-дер-ваальсового взаимодействия - до 1/r 3 и более (до 1/r 12). Все эти взаимодействия в общем случае можно определить как межмолекулярные взаимодействия.

Рассмотрим теперь такое понятие, как «биологически активная молекула». Следует признать, что молекула вещества сама по себе представляет интерес только для химиков и физиков. Их интересует ее строение («первичная структура»), ее форма («вторичная структура»), такие макроскопические показатели, как, например, агрегатное состояние, растворимость, температуры плавления и кипения и т. п., и микроскопические (электронные эффекты и взаимное влияние атомов в данной молекуле, спектральные свойства как проявление этих взаимодействий). Другими словами, речь идет об изучении свойств, проявляемых в принципе одной молекулой. Напомним, что по определению молекула - это наименьшая частица вещества, несущая его химические свойства.

С точки же зрения биологии «изолированная» молекула (в данном случае не важно, одна это молекула или какое-то количество одинаковых молекул) не способна проявлять никаких биологических свойств. Этот тезис звучит достаточно парадоксально, но попробуем его обосновать.

Рассмотрим это на примере ферментов - белковых молекул, представляющих собой биохимические катализаторы. Например, фермент гемоглобин, обеспечивающий перенос кислорода в ткани, состоит из четырех белковых молекул (субъединиц) и одной так называемой простетической группы - гемма, содержащего атом железа, нековалентно связанного с белковыми субъединицами гемоглобина.

Основной, а точнее определяющий вклад во взаимодействие белковых субъединиц и гемма, взаимодействие, приводящее к образованию и устойчивости надмолекулярного комплекса, который и называется гемоглобином, вносят силы, именуемые иногда гидрофобными взаимодействиями, но представляющие собой силы межмолекулярного взаимодействия. Связи, образуемые этими силами, значительно слабее ковалентных. Но при комплементарном взаимодействии, когда две поверхности очень близко подходят друг к другу, число этих слабых связей велико, и поэтому общая энергия взаимодействия молекул достаточно высока и образующийся комплекс достаточно устойчив. Но пока не образовались эти связи между четырьмя субъединицами, пока не присоединилась (опять-таки за счет нековалентных связей) простетическая группа (гемм), ни при каких условиях отдельные части гемоглобина связывать кислород не могут и тем более не могут никуда его переносить. И, следовательно, данной биологической активностью не обладают. (Эти же самые рассуждения можно распространить и на все ферменты в целом.)

При этом сам процесс катализа подразумевает образование в ходе реакции комплекса из как минимум двух компонентов - самого катализатора и молекулы (молекул), называемых субстратом(ами), претерпевающей(их) какие-то химические превращения под действием катализатора. Другими словами, должен образоваться комплекс как минимум из двух молекул, т. е. супрамолекулярный (надмолекулярный) комплекс.

Идея комплементарного взаимодействия впервые была предложена Э. Фишером для объяснения взаимодействия лекарственных веществ с их мишенью в организме и названа взаимодействием «ключ к замку». Хотя лекарственные (и иные биологические вещества) далеко не во всех случаях представляют собой ферменты, но и они способны вызвать какой-либо биологический эффект только после взаимодействия с соответствующей биологической мишенью. А такое взаимодействие опять-таки есть не что иное, как образование супрамолекулярного комплекса.

Следовательно, проявление «обычными» молекулами принципиально новых свойств (в рассматриваемом случае - биологической активности) связано с образованием ими надмолекулярных (супрамолекулярных) комплексов с другими молекулами за счет сил межмолекулярного взаимодействия. Именно так устроено большинство ферментов и систем в организме (рецепторы, мембраны и т. п.), в том числе такие сложные структуры, которые иногда называются биологическими «машинами» (рибосомы, АТФаза и др.). Причем происходит это именно на уровне нанометровых размеров - от одного до нескольких десятков нанометров.

При дальнейшем усложнении и увеличении размеров (более 100 нм), т. е. при переходе на другой размерный уровень (микроуровень), возникают значительно более сложные системы, способные не только к самостоятельному существованию и взаимодействию (в частности, к обмену энергией) с окружающей их средой, но и к самовоспроизведению. То есть опять происходит изменение свойств всей системы - она становится настолько сложной, что уже способна к самовоспроизведению, возникает то, что мы называем живыми структурами.

Многие мыслители неоднократно пытались дать определение Жизни. Не вдаваясь в философские дискуссии, отметим, что, на наш взгляд, жизнь есть существование самовоспроизводящихся структур, а начинаются живые структуры с отдельной клетки. Жизнь есть микро- и макроскопический феномен, а вот основные процессы, обеспечивающие функционирование живых систем, протекают на уровне наноразмеров.

Функционирование живой клетки как интегрированного саморегулирующегося устройства с ярко выраженной структурной иерархией обеспечивается миниатюризацией на наноразмерном уровне. Очевидно, что миниатюризация на уровне наноразмеров является принципиальным атрибутом биохимии, а следовательно, эволюция жизни состоит из появления и интеграции различных форм наноструктурированных объектов. Именно наноразмерный участок структурной иерархии, ограниченный по размерам как сверху, так и снизу (!), является критичным для появления и способности к существованию клеток. То есть именно уровень наноразмеров представляет собой переход от уровня молекулярного к уровню Живого.

Однако из-за того что миниатюризация на уровне наноразмеров является принципиальным атрибутом биохимии, нельзя всё-таки рассматривать любые биохимические манипуляции как нанотехнологические - нанотехнологии предполагают всё-таки конструирование, а не банальное применение молекул и частиц.

Заключение

В начале статьи мы уже пытались как-то классифицировать объекты различных естественных наук по принципу характерных размеров исследуемых ими объектов. Вернемся к этому снова и, применив эту классификацию, получим, что атомная физика, изучающая взаимодействия внутри атома, - это субангстремные (фемто- и пико-) размеры.

«Обычные» неорганическая и органическая химия - это ангстремные размеры, уровень отдельных молекул или связей внутри кристаллов неорганических веществ. А вот биохимия - это уровень наноразмеров, уровень существования и функционирования супрамолекулярных структур, стабилизированных нековалентными межмолекулярными силами.

Но биохимические структуры еще относительно просты, и функционировать они могут относительно независимо (in vitro , если угодно). Дальнейшее усложнение, образование супрамолекулярными структурами сложных ансамблей - это есть переход к самовоспроизводящимся структурам, переход к Живому. И здесь уже на уровне клеток это микроразмеры, а на уровне организмов - макроразмеры. Это уже биология и физиология.

Наноуровень представляет собой переходную область от уровня молекулярного, образующего базис существования всего живого, состоящего из молекул, к уровню Живого, уровню существования самовоспроизводящихся структур, а наночастицы, представляющие собой супрамолекулярные структуры, стабилизированные силами межмолекулярного взаимодействия, представляют собой переходную форму от отдельных молекул к сложным функциональным системам. Это можно отразить схемой, подчеркивающей, в частности, и непрерывность Природы (рис. 9). В схеме мир наноразмеров расположен между атомно-молекулярным миром и миром Живого, состоящего из тех же атомов и молекул, но организованных в сложные самовоспроизводящиеся структуры, а переход из одного мира в другой определяется не только (и не столько) размерами структур, сколько их сложностью. Природа давно придумала и использует в живых системах супрамолекулярные структуры. Мы же далеко не всегда можем понять, а тем более повторить то, что Природа делает легко и непринужденно. Но нельзя ждать от нее милостей, надо у нее учиться.

Литература:
1) Вуль А.Я., Соколов В.И. Исследования наноугле-рода в России: от фуллеренов к нанотрубкам и нано-алмазам/ Российские нанотехнологии, 2007. Т. 3 (3–4).
2) Кац Е.А. Фуллерены, углеродные нанотрубки и нанокластеры: родословная форм и идей. - М.: ЛКИ, 2008.
3) Оствальд В. Мир обойденных величин. - М.: Изд-во товарищества «Мир», 1923.
4) Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. - Росток, СПб, 2006.
5) Ткачук В.А. Нанотехнологии и медицина // Российские нанотехнологии, 2009. Т. 4 (7–8).
6) Хобза П., Заградник Р. Межмолекулярные комплексы. - М.: Мир, 1989.
7) Mann S. Life as a nanoscale phenomenon. Angew. Chem. Int. Ed. 2008, 47, 5306–5320.
8) Pokropivny V.V., Skorokhod V.V. New dimensionality classifications of nanostructures // Physica E, 2008, v. 40, p. 2521–2525.

Нано - 10 –9 , пико - 10 –12 , фемто - 10 –15 .

Притом не только увидеть, но и потрогать. «Но он сказал им: если не увижу на руках Его ран от гвоздей, и не вложу перста моего в раны от гвоздей, и не вложу руки моей в ребра Его, не поверю» [Евангелие от Иоанна, глава 20, стих 24].

Например, об атомах говорил еще в 430 г. до н. э. Демокрит. Затем Дальтон в 1805 г. утверждал, что: 1) элементы состоят из атомов, 2) атомы одного элемента идентичны и отличаются от атомов другого элемента и 3) атомы не могут быть разрушены в химической реакции. Но лишь с конца XIX века стали развиваться теории строения атома, что и вызвало революцию в физике.

Понятие «нанотехнология» было введено в обиход в 1974 г. японцем Норио Танигучи. Долгое время термин не получал широкого распространения среди специалистов, работавших в связанных областях, так как Танигучи использовал понятие «нано» только для обозначения точности обработки поверхностей, например, в технологиях, позволяющих контролировать шероховатости поверхности материалов на уровне меньше микрометра и т. п.

Понятия «фуллерены», «углеродные нанотрубки» и «графен» будут подробно обсуждаться во второй части статьи.

Экспериментальной иллюстрацией этого утверждения является недавно опубликованная разработка технологических приемов получения графеновых листов путем «химического разрезания» и «разворачивания» углеродных нанотрубок.

Слово «микроскопические» употреблено здесь лишь потому, что так эти свойства назывались ранее, хотя речь в данном случае идет о свойствах, проявляемых молекулами и атомами, т. е. о пикоразмерном интервале.

Что, в частности, привело к возникновению точки зрения, что жизнь есть феномен нанометровых размеров [Mann , 2008], что, на наш взгляд, не совсем верно.










  • >>
  • Последняя

Быстрое развитие науки привело к тому, что область исследований постепенно уменьшается с макрообъектов до микро. Сейчас одним из передовых направлений является нанотехнологии – отрасль теоретической и прикладной науки, сфера исследования которых направлена на теоретико-прикладной анализ и создание микроскопических объектов путем различных действий с участием атомов и молекул.

По большинству иностранных статей первые исследования, которые впоследствии получили название нанотехнологий, приписывают Ричарду Фейнману. Особенно знаменательно в этом плане его речь «Внизу полным-полно места» в конце 50-х годов XX века, которую он представил на собрании Американского сообщества физиков, которое происходило каждый год. По предположению Фейнмана механическое изменение положения отдельных атомов можно осуществить применением соответствующего манипулятора, таким, чтобы его размеры позволяли проводить операции на микроуровне. Данное предположение не противоречило современному знанию физических законов.

Фейнман также представил свое видение такого манипулятора. Для этого необходимо было сконструировать такое устройство, которое могло бы воспроизвести свою точную, но уменьшенную копию. Полученный механизм должен был также способен построить свой образ в уменьшенном варианте. Это действие необходимо было производить до тех пор, пока не будет получен прибор, соизмеримый с размерами атома. Для того чтобы манипулятор продолжал при этом работать на должном уровне в соответствии с изначально заданными параметрами, необходимо обеспечить его устройство такими изменениями, которые бы компенсировали снижение влияния сил гравитации и увеличение действия сил Ван-дер-Вальса и межмолекулярных связей с переходом с макроуровня до микро.

Итоговому варианту манипулятора должно было быть под силу собрать свой аналог из отдельных атомов. Число создаваемых при этом копий не ограничивается, позволяя за небольшой промежуток времени воспроизводить достаточное количество подобных механизмов. Они уже впоследствии и будут собирать макровещи подобной сборкой на атомарном уровне. Такой подход в значительной мере должен уменьшить количество расходов, так как нанороботам (именно такое название получили позднее мини-манипуляторы) потребуется конкретное количество молекул и энергия, а также написанный алгоритм для сборки конкретных новых предметов.

Идея Фейнмана по созданию наноманипулятора к нашему времени не была опровергнута, но, в то же время, никому и не подвернулась удача полностью претворить в жизнь этот подход. Одновременно теоретическое исследование его возможностей привело к составлению гипотетического плана конца света. Согласно этой теории, нанороботы в конечном счета поглотят всею биомассу Земного шара, просто следуя заданной программе самовоспроизведения.

Но еще до Фейнмана у ученых возникали мысли о более глубоком изучении мира. Так, Ньютон предполагал, что в будущем у ученых с помощью новых микроскопов появится возможность изучить основы всех наук.

Само слово «нанотехнологии» было предложено в середине 70-х годов. Его первым ввел в обиход Норио Танигути в отношении изделий, чьи габариты соизмеримы только нанометрами. Позднее данное определение подхватил Эрик Дрекслер, написав книгу о грядущей эре нанотехнологий.

На что способны нанотехнологии

Продвижение нанотехнологий стремительно ведет к научному прорыву сразу в нескольких областях. Рассмотрим подробнее некоторые из них.

Сфера строительства, благодаря внедрению нанотехнологий, должна улучшить качество возводимых конструкций. Так нанороботы будут отслеживать прочность возводимых зданий, уделяя особое внимание нарушению целостности. Объекты, построенные подобным образом, прослужат в несколько раз дольше. К тому же нанороботы обеспечат такие дома возможностью подстраивания температурного климата под людей и погоду.

Нанотехнологии в медицине

В медицине нанороботам пророчат наиболее чувствительную диагностику заболеваний, что в значительной мере повысит шансы пациентов на выздоровление. Станет возможной победа над раком и другими смертельными заболеваниями. Старые препараты, чье действие было направлено на уничтожение раковых клеток, поражали также и здоровые. Нанотехнологии должны позволить избежать этого, направляя лекарство исключительно на раковые клетки.

В генной сфере прогнозируется появление ДНК-нанотехнологии, которая с помощью манипулирования с основанием ДНК-молекулы и многочисленными нуклеотидами, позволит получать точно запрограммированные молекулы. Это планируется применять для создания сложных лекарственных препаратов.

Интенсивное развитие нанотехнологи уже внедрило в медицину некоторые улучшения. Так, уже в самом начале XXI века стала активно развиваться наноплазмоника, которая открыла возможность передачи электромагнитного импульса по цепочке из металлических наночастиц простым возбуждением плазмонных колебаний.

Нанотехнологии позволят уменьшить влияние нефти и газа на общий быт. Они также способны увеличить КПД солнечных батарей с 20% до 60%. Эта технология позволит обеспечить дешевой экологической энергией дома в солнечных регионах: для этого достаточно лишь покрыть солнечной нанопленкой их крыши.

Громоздкую технику заменят компактные роботы, которые помимо того что легче в управлении, так еще и имеют больший функционал. Их задача состоит в создании и производстве различных предметов и механизмов на атомарном уровне. Материал, используемый для создания нанороботов, имеет низкий коэффициент трения, что обеспечить дополнительную защиту деталям от повреждений, а также в значительной мере сократить количество затрачиваемой энергии.

Однако все это лишь наброски того, куда сможет внедриться нанотехнология. На самом деле ее возможности куда шире и ограничиваются лишь фантазией ученых. Многие из них ассоциируют появление нанотехнологий с началом новой научно-технической революции, которая внесет в науку XXI века значительное изменения.

К сожалению, пока что внедрение нанотехнологий происходит очень медленно. Не многие устройства имеют возможность скомпилироваться для работы на наноуровне. По большинству это объясняется тем, что необходимо затратить очень много средства на тотальное внедрение нанотехнологий в науку, тогда как отдача будет очень медленной, и затраты не скоро компенсируют себя, на что в первую очередь обращают внимание инвесторы.

Тем не менее от них никто не отказывается. Предполагается, что в будущем будут доступны легкоуправляемые и полностью автоматизированные наноманипуляторы, которые полностью заменят современную крупногабаритную технику. Например, «стаей» биороботов можно заменить целую насосную станцию.

Также прогнозируют появление ДНК-компьютеров, которые позволят использовать числовые способности форм ДНК. В подобном отображении вся информация отображается не в виде привычного двоичного кода, а в форме молекулярной структуры, берущей в качестве своего основания ДНК. Анализ, управление и другие операции над такими структурами обеспечат особые ферменты.

Перспективным является и появление атомно-силового микроскопа. Он представляет собой зондовый микроскоп с возможность сканирования, обладающий высоким разрешением. В основу принципа его работы легло взаимодействие иглы зонда и поверхности исследуемого материала. От туннельного микроскопа атомно-силовой отличается направленностью своего действия как на проводящие, так и на непроводящие материалы через замедляющую среду, будь то даже толстую прослойку жидкости. Этой свойство должно обеспечить возможность работы с ДНК и РНК. Размер зонда и кривизна его иглы являются исходными параметрами для корректировки разрешения микроскопа, которое соответствует атомарному в горизонтальному направлении и намного большему – в вертикальном.

В 2005 году учеными Бостонского университета была сконструирована первая антенна-осциллятор с габаритами в 1 мкм. Она состоит из порядка 5000 атомов и способна воспроизводить частоту в 1,49 ГГц. Эта технология должна обеспечить передачу больших потоков информации.

ТОП-10 нанотехнологий с удивительным потенциалом

Если попросить любого человека навскидку назвать пару величайших изобретений, то в их числе наверняка окажется колесо, велосипед, Интернет и подобное. Навряд ли рядовой житель Земли упомянет в таком случае что-то из нанотехнологий. Хотя эта область еще мало изучена, она уже выдала нам просто фантастические вещи. Обычно человеческому глазу доступны для захвата объекты размером от 0,1 мм. Ниже представлены изобретения, чьи параметры меньше еще на шесть порядков.

С помощью электричества можно придать особому сплаву галлия, иридия и олова любую форму, в том числе заставить его бегать по кругу в чаше Петри. Этот мягкий сплав часто называют умным материалом, который в случае необходимости изменять свою форму в соответствии с окружающей средой и условиями огибающего ее пространства.

Данный сплав является биомимитическим, что объясняет воспроизведение им биохимических реакций, хотя сама его природа далека от биологической.

Управление этим сплавом осуществляется с помощью электрических зарядов. Однако при наличии дисбалансирующих нагрузок, созданных разностью давлений между частями молекул этого металла. По предположению некоторых ученых свойства этого сплава могут послужить началом разгадки нюансов превращения внутренней энергии в механическую. И хотя характеристики материала напоминают особенности одного терминатора, никто пока что не планирует применять его в таком ключе, как минимум потому, что все реакции возможно только в хлориде натрия или его же гидроксиде.

Нанопластыри

Деятельность ученых Йоркского университета уже многие годы направлена на получение особых нанопластырей. Их суть заключается в том, что с помощью них станет возможной транспортировка лекарственных препаратов внутрь организма без вмешательства игл. Такой пластырь приклеивается, например, к руке и направляет рассчитанную дозу лекарства в организм посредством нанороботов, проникающих через поры и фолликулы. Такие частицы могут самостоятельно обнаружить в организме болезнетворные клетки, воздействовать на них и способствовать их выводу с другими отходами организма.

Нанопластыри планируют использовать даже при лечении рака. Отличительной чертой наночастиц, в сравнении с химиотерапией, является их направленность: они способны разрушать только вредоносные клетки, не трогая здоровые.

Нанофильтр для воды

Такой фильтр представляет собой совокупность нанопленки и металлической нержавеющей сетки. Это сочетание материалов заставляет нефть отталкиваться, когда как дальше уже поступает чистая вода.

Идею для такого фильтра ученым подкинула сама природа. Подобными свойствами наделены листья лотоса, однако они проявляют обратный эффект – являются водоотталкивающими. В свое время лотос стал также источником вдохновения для создания множества гидрофобных материалов.

Сейчас ученые пытаются создать такую нанопленку, чтобы ее было возможно дополнить специализированными молекулами, обладающими способностью очищать воду. Ее невозможность заметить невооруженными органами зрения. Само производство планируется быть недорогим: порядка одного доллара за тысячу квадратных сантиметров нанопленки.

Мало кого из жителей когда-либо интересовал вопрос, чем же дышит персонал подводных суден, тогда как для самих членов команды этот нюанс является очень важным. Очищение воздуха от углекислого газа в таких замкнутых помещениях должно производиться очень быстро, чтобы предотвратить недостаток кислорода, необходимый для поддержания нормального уровня жизни человека. Изначально с этой целью использовались амины – они прекрасно очищают воздух от углекислого газа, однако создают очень неприятных запах.

Решением этой проблемы стала так называемая технология SAMMS, согласно которой излишняя двуокись углерода поглощается пористостью керамических гранул со внедренными в них наночастицами. Совокупность материалов различается в зависимости от каких частиц необходимо очищать воздух, но в целом все такие фильтры обладают высокой эффективностью. Отличает подобный очиститель и экономичность: столовой ложки гранул достаточно для очищения воздуха над целым футбольным полем.

Нанопроводники

Отдельные ученые нашли свое призвание в создании электрического нанопроводника. Он по своей сути является твердой частицей, настраиваемой на транспортировку электричества в любом направлении. По уже проведенным исследованиям видно, что такой частицей можно спокойно заменить различные элементы электроники: диоды, переключатели и многое другое. Такая частица покрывается химическим веществом с положительным зарядом и окружается анионами. Поступающее электричество способствует перемещению анионов вокруг таких частиц.

По заверениям ученых такой проводник обладает непревзойденной эффективностью. Такая технология позволит в дальнейшем получать элементы электроники, которые могут сами перенастраиваться под решение новых, возникающих в процессе эксплуатации, задач. Это позволит уменьшить приборы как в габаритах, так и со стороны затрат, ибо возможность перенастройки отдельных наночастиц значительно облегчит ремонт и улучшение электроники.

Нанотехнологическое зарядное устройство

Создание этого устройства ожидает, наверное, каждый, так как его свойства позволят избавиться от использования огромного количества старых зарядников. Принцип работы нового приборы схож с губкой, однако в данном случае впитывается не какая-либо жидкость, а сама кинетическая энергия из окружающей среды. Применение будет отличаться сравнительной простотой: устройство будет достаточным прикрепить к смартфону, планшету или любому другом прибору, которому необходима периодическая подзарядка для нормального функционирования.

В основу такого устройства лег пьезоматериал, способный создавать электрический ток под механическим напряжением. Материал обеспечивают большим количеством наноскопических пор, что и делает его схожим с губкой.

Чаще всего устройство такого типа сейчас называют наногенератором. Ученые прогнозируют, что их применение широко развернется как от смартфонов, так и до замены обеспечения автомобилей горючим топливом.

Искусственная сетчатка

Ученые Израиля сейчас увлеченно работают над технологией, напрямую контактирующей с нейронами и передающей зрительную информацию в кору мозга. С помощью такого наномоделирования возможно добиться полной замены функционала глазного яблока, предоставляя возможность слепым людям снова видеть.

Уже были проведены соответствующие испытания на ослепшей курице. Ей на зрачок была прикреплена нанопленка, которая помогла ей уловить изменение света. Окончательны итогов полной имитации зрения им еще не удалось добиться, но тем не менее полученные результаты уже говорят о прогрессе в этом деле.

Внедрение нанотехнологий в данном случае позволяет отказаться от присутствия проводов и металлических элементов, что также способствует получению более качественного изображения.

Научными работниками из Шанхая были разработаны особые светящиеся нити, которые также пригодны для изготовления тканей для одежды. В структуре таких нитей лежит проволока из нержавейки, покрытая наночастицами, полимерной электролюминесцентной прослойкой и нанотрубчатой защитой. Несмотря на словесную громоздкость такие нити получаются сверх тонкими и легкими, которые способны излучать свет за счет своей электрохимической энергии. Рабочая мощность таких нитей несколько меньше, чем у светодиодов.

К сожалению, на настоящие момент они не могут светить продолжительное время. Запаса энергии у таких нитей достаточно лишь на непрерывную работу в течение нескольких часов. Основоположники этой технологии утверждают, что смогут увеличить продолжительность работы на несколько порядков. Однако использование такой одежды все равно пока сомнительно, так как ее нельзя стирать.

Наноиглы для восстановления внутренних органов

Хотя уже разрабатываются нанопластыри, чтобы избежать использования игл в медицине, одновременно другая группа ученых решила заняться созданием наноигл. Уменьшение размеров обычных игл позволило бы существенно изменить представление о хирургии в целом.

Недавно уже были проведены успешные эксперименты на мышах. Через наноиглы им вводили под кожу нуклеиновые кислоты, которые должны улучшить регенерацию органов и нервных клеток, чтобы в дальнейшем вернуть им былую работоспособность. После выполнения своей задачи иглы не извлекаются из организма, а оставляются в нем. Через пару дней они полностью разлагаются и выводятся естественным путем. Во время проведения испытаний ученые не обнаружили какого-либо побочного воздействия на кровеносные сосуды мышц спины мышей.

В случае человека использование подобных наноигл может сводиться к доставке лекарственных препаратов, например, во время трансплантации органов. Полезные препараты обеспечат максимальное восстановление близлежащих тканей к пересаженному органу, чтобы увеличить шансы его приживания.

Химику Мартину Берку из Илинойса удалось посредством комбинирования различных молекул создать различные химические соединения, наделенные восхитительными и полезными характеристиками. К числу таких относится и ратанин, который в природе можно обнаружить только в одном растении в Перу.

Нанотехнологии открывают такой колоссальный неизведанный плацдарм для синтезирования новых веществ, что невозможно и представить его границы. Ученые предполагают, что таким образом можно получить дорогие медицинские аппараты, элементы солнечных панелей, а также химические вещества, ан чье естественное получение ученые тратили по несколько лет.

На настоящий момент возможности трехмерного химического принтера пока не безграничны. Ему доступно создание только новых молекул, одна Берк не теряет надежды, что в скором времени будет готова простая версия такого устройства, доступная каждому человеку, чтобы обеспечивать себя необходимым лекарственными препаратами.

Представляет ли нанотехнология угрозу человечеству или окружающей среде?

На удивление в сети мало встречается информации о вредоносности нанотехнологий, ведь люди, привыкшие к старому, так любят наделять негативными качествами новые изобретения, которые в корне меняют их представление. Однако некоторые исследования все-таки доказывают возможность пагубного их воздействия.

Таким образом испытания 2003 года дали результаты, когда использование углеродных нанотрубок повредило легкие грызунов. В 2004 году была замечена возможность накопления фуллеренов, которые впоследствии наносили повреждения мозгу испытуемых рыб. И хотя угроза человеческому организму пока не доказан, некоторые ученые склоняются в сторону ограничения использования нанотехнологий.

Часть из них выставляет в качестве аргументации то, что внедрение нанотехнологий в жизнь может оказать негативное влияние на социальное и этическое поведение людей. Например, введение промышленных наноманипуляторов на производство приведет к неминуемой потере большого количества рабочих мест. Также изменится концепция восприятия человеческого организма, так как некоторые нанотехнологии могут позволить как продлить жизнь, так и значительно улучшить физические показатели организма.

Место России в нанотехнологиях Мирового рынка

Лидерство по вложениям в эту сферу сейчас и на протяжении уже многих лет занимают страны Европейского союза и США. За последние года значительно увеличили свои капиталовложения в область исследований нанотехнологий Россия и Китай. Так, например, объем вложенных средств в это направление за последний год в России составил почти 30 миллиардов рублей.

По замечанию Лондона Россия и Китай проинвестировали в продвижение нанотехнологий уже в большей мере, чем сделали это США, хотя и присоединились они к этой гонке с заметным опозданием.

Не обошлось и без первенства. За столь незначительное время, что Россия уделяет продвижению нанотехнологий, нашим ученым уже удалось добиться лучших результатов в отдельных областях исследований и положить начало новым интересным задумкам в этой сфере, которые обладают высокой перспективностью и значимостью.

Среди таких ярких достижений часто выделяют изобретение ультрадисперсных наноматериалов, конструирование одноэлектронных устройств, а также значительное продвижение в создании атомно-силового микроскопа. В 2008 году в Санкт-Петербурге была проведена специализированная выставка,на которой были представлены около сотни перспективных наноразработок.

Тем временем некоторые изобретения уровня нанотехнологий в России уже вышли на потребительский рынок. К их числу относят нанопорошки, наномембраны и нанотрубки, которые уже активно используются в науке. Однако некоторые зарубежные эксперты все-таки указывают на заметную отсталость России в данном направлении как минимум на десяток лет.

Нанотехнологии в искусстве, примеры

Не воздержалось от веяния нанотехнологии и культура. Так некоторые картины художницы Наташи Вита-Мор из Америки отражают всю необычность и фантастичность этой области науки. Не смогло современное общество воздержаться от создания отдельного направления наноискуства, получившего название «наноарт». В его рамках создаются скульптуры соответствующих габаритов (микро и нано) посредством химических и физических процессов, возникающих при обработке материалов, сканировании и фотографировании отдельных элементов специальными микроскопами с последующей коррекцией в редакторе.

Заметки о нанотехнологиях находят и в более старых произведениях. Так в художественной повести Н. Лескова «Левша», написанной в далеком 1881 году, упоминалось об микроскопе, способном делать большим изображение в несколько миллионов раз. Такой возможностью сейчас обладают некоторые модели атомно-силовых зондирующих микроскопов, которые являются детищами развития наноиндустрии. Исходя из этого, можно относить Лескова к одному из самых первых продвиженцев нанотехнологий.

Мысли Фейнмана и его предположения по создания наноманипулятора по поводу развития нанотехнологий, высказанные им на его выступлении, практически совпадают по своему смысловому содержанию с произведением Б. Житкова «Микроруки», написанному почти за двадцать лет до того громогласного выступления. Негативные последствия внедрения нанотехнологий в производство и в повседневную жизнь можно уловить также в работах М. Крайтона, С. Лукъяненко и С. Лема. Тем временем Ю. Никитин делает главного героя своего романа «Трансчеловек» управляющим корпорацией нанотехнологий, который собственноручно провел на себе первые испытания медицинских нанопрепаратов.

И, конечно же, не избежала этого влияния и сфера кинематографа. Так во вселенной сериала «Звездные врата» к числу наиболее продвинутых рас относят репликаторов, которые появились в качестве итога неудачных испытаний различных элементов нанотехнологий. А кино «День, когда Земля остановилась», где главного героя сыграл Киану Ривз, цивилизация инопланетян ставит человеческую расу перед фактом, что их ждет неминуемая смерть, и пытается претворить свой приговор в жизнь, уничтожив практические все живое на планете с использованием саморазмножающихся нанороботов, поглощающих все, что встречается на их пути.

/ТК 229 под нанотехнологиями подразумевается следующее:

  • знание и управление процессами, как правило, в масштабе 1 нм , но не исключающее масштаб менее 100 нм в одном или более измерениях, когда ввод в действие размерного эффекта (явления) приводит к возможности новых применений;
  • использование свойств объектов и материалов в нанометровом масштабе, которые отличаются от свойств свободных атомов или молекул, а также от объемных свойств вещества, состоящего из этих атомов или молекул, для создания более совершенных материалов, приборов, систем, реализующих эти свойства.

2.Согласно «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 года » ( г.) нанотехнология определяется как совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, хотя бы в одном измерении, и в результате этого получившие принципиально новые качества , позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба.

Практический аспект нанотехнологий включает в себя производство устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и наночастицами. Подразумевается, что не обязательно объект должен обладать хоть одним линейным размером менее 100 нм - это могут быть макрообъекты, атомарная структура которых контролируемо создаётся с разрешением на уровне отдельных атомов, либо же содержащие в себе нанообъекты . В более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул (например, силы Ван-дер-Ваальса), квантовые эффекты .

Нанотехнология и в особенности молекулярная технология - новые, очень мало исследованные дисциплины. Основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных достижений позволяет относить её к высоким технологиям .

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь » или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул» .

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: Грядущая эра нанотехнологии » («Engines of Creation: The Coming Era of Nanotechnology» ) и «Nanosystems: Molecular Machinery, Manufacturing, and Computation» . Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.

Фундаментальные положения

Недавно было выяснено, что законы трения в макро- и наномире оказались похожи .

Наночастицы

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы размерами от 1 до 100 нанометров обычно называют «наночастицами ». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей . Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью , зато более дёшевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров - белками , нуклеиновыми кислотами и др. Тщательно очищенные наночастицы могут самовыстраиваться в определённые структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.

Нанообъекты делятся на 3 основных класса: трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т. д.; двумерные объекты - плёнки, получаемые методами молекулярного наслаивания, CVD , ALD, методом ионного наслаивания и т. д.; одномерные объекты - вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д. Также существуют нанокомпозиты - материалы, полученные введением наночастиц в какие-либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв .

Особый класс составляют органические наночастицы как естественного, так и искусственного происхождения.

Поскольку многие физические и химические свойства наночастиц, в отличие от объемных материалов, сильно зависят от их размера, в последние годы проявляется значительный интерес к методам измерения размеров наночастиц в растворах: анализ траекторий наночастиц , динамическое светорассеяние , седиментационный анализ , ультразвуковые методы.

Самоорганизация наночастиц

Один из важнейших вопросов, стоящих перед нанотехнологией - как заставить молекулы группироваться определённым способом, самоорганизовываться, чтобы в итоге получить новые материалы или устройства. Этой проблемой занимается раздел химии - супрамолекулярная химия . Она изучает не отдельные молекулы, а взаимодействия между молекулами, которые способны упорядочить молекулы определённым способом, создавая новые вещества и материалы. Обнадёживает то, что в природе действительно существуют подобные системы и осуществляются подобные процессы. Так, известны биополимеры , способные организовываться в особые структуры. Один из примеров - белки , которые не только могут сворачиваться в глобулярную форму, но и образовывать комплексы - структуры, включающие несколько молекул белков . Уже сейчас существует метод синтеза, использующий специфические свойства молекулы ДНК . Берётся комплементарная ДНК (кДНК), к одному из концов подсоединяется молекула А или Б. Имеем 2 вещества: ----А и ----Б, где ---- - условное изображение одинарной молекулы ДНК. Теперь, если смешать эти 2 вещества, между двумя одинарными цепочками ДНК образуются водородные связи, которые притянут молекулы А и Б друг к другу. Условно изобразим полученное соединение: ====АБ. Молекула ДНК может быть легко удалена после окончания процесса.

Проблема образования агломератов

Частицы размерами порядка нанометров или наночастицы , как их называют в научных кругах, имеют одно свойство, которое очень мешает их использованию. Они могут образовывать агломераты , то есть слипаться друг с другом. Так как наночастицы многообещающи в отраслях производства керамики , металлургии , эту проблему необходимо решать. Одно из возможных решений - использование веществ - диспергентов , таких как цитрат аммония (водный раствор), имидазолин, олеиновый спирт (нерастворимых в воде). Их можно добавлять в среду, содержащую наночастицы. Подробнее это рассмотрено в источнике «Organic Additives And Ceramic Processing», D. J. Shanefield, Kluwer Academic Publ., Boston (англ.).

Новейшие достижения

Наноматериалы

Материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих.

  • Углеродные нанотрубки - протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей (графенов) и обычно заканчивающиеся полусферической головкой.
  • Фуллерены - молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие - алмаз , карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода.
  • Графен - монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете (The University Of Manchester). Графен можно использовать как детектор молекул (NO 2), позволяющий детектировать приход и уход единичных молекул. Носители зарядов в графене обладают высокой подвижностью при комнатной температуре, благодаря чему с решением проблемы формирования запрещённой зоны в этом полуметалле графен оказывается перспективным материалом, заменяющим кремний в интегральных микросхемах.
  • Нанокристаллы
  • Аэрографит - самый твёрдый материал
  • Наноаккумуляторы - в начале 2005 года компания Altair Nanotechnologies (США) объявила о создании инновационного нанотехнологического материала для электродов литий-ионных аккумуляторов . Аккумуляторы с Li 4 Ti 5 O 12 электродами имеют время зарядки 10-15 минут. В феврале 2006 года компания начала производство аккумуляторов на своём заводе в Индиане . В марте Altairnano и компания Boshart Engineering заключили соглашение о совместном создании электромобиля . В мае успешно завершились испытания автомобильных наноаккумуляторов. В июле Altair Nanotechnologies получила первый заказ на поставку литий-ионных аккумуляторов для электромобилей .
  • Самоочищающиеся поверхности на основе эффекта лотоса .

Методы исследования

В силу того, что нанотехнология - междисциплинарная наука, для проведения научных исследований используют те же методы, что и «классические» биология, химия, физика. Одним из относительно новых методов исследований в области нанотехнологии является сканирующая зондовая микроскопия. В настоящее время в исследовательских лабораториях используются не только «классические» зондовые микроскопы, но и СЗМ в комплексе с оптическими микроскопами, электронными микроскопами, спектрометрами комбинационного (рамановского) рассеяния и флюоресценции, ультрамикротомами (для получения трёхмерной структуры материалов).

Сканирующая зондовая микроскопия

Одним из методов, используемых для изучения нанообъектов, является сканирующая зондовая микроскопия . В рамках сканирующей зондовой микроскопии реализованы оптические методики.

Исследования свойств поверхности с помощью сканирующего зондового микроскопа (СЗМ) проводятся на воздухе при атмосферном давлении, в вакууме и даже в жидкости. Различные СЗМ методики позволяют изучать как проводящие, так и не проводящие объекты. Кроме того, СЗМ поддерживает совмещение с другими методами исследования, например с классической оптической микроскопией и спектральными методами.

При выполнении подобных манипуляций возникает ряд технических трудностей. В частности, требуется создание условий сверхвысокого вакуума (10 −11 тор), необходимо охлаждать подложку и микроскоп до сверхнизких температур (4-10 К), поверхность подложки должна быть атомарно чистой и атомарно гладкой, для чего применяются специальные методы её приготовления. Охлаждение подложки производится с целью уменьшения поверхностной диффузии осаждаемых атомов, охлаждение микроскопа позволяет избавиться от термодрейфа.

Для решения задач, связанных с точным измерением топографии, свойств поверхности и с манипуляцией нанообъектами посредством зонда сканирующего атомно-силового микроскопа, была предложена методология особенность-ориентированного сканирования (ООС). ООС подход позволяет в автоматическом режиме реализовать нанотехнологию «снизу-вверх», то есть технологию поэлементной сборки наноустройств. При этом работа производится при комнатной температуре, поскольку ООС в реальном масштабе времени определяет скорость дрейфа и выполняет компенсацию вызываемого дрейфом смещения. На многозондовых инструментах ООС позволяет последовательно применить к нанообъекту любое количество аналитических и технологических зондов, что даёт возможность создавать сложные нанотехнологические процессы, состоящие из большого числа измерительных, технологических и контрольных операций.

Однако, в большинстве случаев нет необходимости манипулировать отдельными атомами или наночастицами и достаточно обычных лабораторных условий для изучения интересующих объектов.

Наномедицина и химическая промышленность

Направление в современной медицине, основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.

  • Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис-пептиды).

Компьютеры и микроэлектроника

  • Центральные процессоры - 15 октября 2007 года компания Intel заявила о разработке нового прототипа процессора , содержащего наименьший структурный элемент размерами примерно 45 нм . В дальнейшем компания намерена достичь размеров структурных элементов до 5 нм. Основной конкурент Intel , компания AMD , также давно использует для производства своих процессоров нанотехнологические процессы, разработанные совместно с компанией IBM . Характерным отличием от разработок Intel является применение дополнительного изолирующего слоя SOI , препятствующего утечке тока за счет дополнительной изоляции структур, формирующих транзистор. Уже существуют рабочие образцы процессоров с транзисторами размером 32 нм и опытные образцы на 22 нм .
  • Жёсткие диски - в 2007 году Питер Грюнберг и Альберт Ферт получили Нобелевскую премию по физике за открытие GMR-эффекта , позволяющего производить запись данных на жестких дисках с атомарной плотностью информации.
  • Сканирующий зондовый микроскоп - микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. Обычно под взаимодействием понимается притяжение или отталкивание кантилевера от поверхности из-за сил Ван-дер-Ваальса. Но при использовании специальных кантилеверов можно изучать электрические и магнитные свойства поверхности. СЗМ может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение сканирующих зондовых микроскопов зависит от характеристик используемых зондов. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
  • Антенна-осциллятор - 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна-осциллятор размерами порядка 1 мкм . Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц , что позволяет передавать с её помощью огромные объёмы информации.
  • Плазмоны - коллективные колебания свободных электронов в металле. Характерной особенностью возбуждения плазмонов можно считать так называемый плазмонный резонанс, впервые предсказанный Ми в начале XX века. Длина волны плазмонного резонанса, например, для сферической частицы серебра диаметром 50 нм составляет примерно 400 нм, что указывает на возможность регистрации наночастиц далеко за границами дифракционного предела (длина волны излучения много больше размеров частицы). В начале -го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии - наноплазмонике. Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Робототехника

  • Молекулярные роторы - синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.
  • Молекулярные пропеллеры - наноразмерные молекулы в форме винта, способные совершать вращательные движения благодаря своей специальной форме, аналогичной форме макроскопического винта.
  • С 2006 года в рамках проекта RoboCup (чемпионат по футболу среди роботов) появилась номинация «Nanogram Competition», в которой игровое поле представляет из себя квадрат со стороной 2,5 мм. Максимальный размер игрока ограничен 300 мкм.

Концептуальные устройства

  • Nokia Morph - проект сотового телефона будущего, созданный совместно научно-исследовательским подразделением Nokia и Кембриджским университетом на основе использования нанотехнологических материалов.

Индустрия нанотехнологий

Ряд исследователей указывают на то, что негативное отношение к нанотехнологии у неспециалистов может быть связано с религиозностью , а также из-за опасений, связанных с токсичностью наноматериалов . Особо это актуально для широко разрекламированного коллоидного серебра , свойства и безопасность которого находятся под большим вопросом.

Реакция мирового сообщества на развитие нанотехнологий

Тема последствий развития нанотехнологий становится объектом философских исследований. Так, о перспективах развития нанотехнологий говорилось на прошедшей в 2007 году международной футурологической конференции Transvision, организованной WTA .

Реакция российского общества на развитие нанотехнологий

26 апреля 2007 года президент России Владимир Путин в послании Федеральному Собранию назвал нанотехнологии «наиболее приоритетным направлением развития науки и техники» . Он предположил, что для большинства россиян нанотехнологии сегодня - «некая абстракция вроде атомной энергии в 30-е годы» .

Затем о необходимости развития нанотехнологий заявляет ряд российских общественных организаций.

8 октября 2008 года было создано «Нанотехнологическое общество России», в задачи которого входит «просвещение российского общества в области нанотехнологий и формирование благоприятного общественного мнения в пользу нанотехнологического развития страны»

6 октября 2009 года президент Дмитрий Медведев на открытии Международного форума по нанотехнологиям в Москве заявил: «Главное, чтобы не произошло по известному сценарию - мировая экономика начинает расти, экспортный потенциал возрастает, и никакие нанотехнологии не нужны и можно дальше продавать энергоносители. Этот сценарий был бы для нашей страны просто губительным. Все мы должны сделать так, чтобы нанотехнологии стали одной из мощнейших отраслей экономики. Именно к такому сценарию развития я вас призываю», - подчеркнул Д. Медведев, обращаясь к участникам форума. При этом президент особо отметил, что «пока эта (государственная) поддержка (бизнеса) носит безалаберный характер, пока мы не смогли ухватить суть этой работы, надо наладить эту работу». Д. Медведев также подчеркнул, что Роснано до 2015 года на эти цели будет выделено 318 млрд рублей. Д. Медведев предложил Минобрнауки увеличить количество специальностей в связи с развитием потребности в квалифицированных кадрах для нанотехнологий, а также создать госзаказ на инновации и открыть «зеленый коридор» для экспорта высокотехнологичных товаров.

Нанотехнологии в искусстве

Ряд произведений американской художницы Наташи Вита-Мор касается нанотехнологической тематики .

Нанороботам и их роли в социальном прогрессе посвящена композиция «Nanobots» российской группы Re-Zone.

Нанотехнологии в фантастике

В широко известном произведении русского писателя Н. Лескова «Левша» ( год) есть любопытный фрагмент:

Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы , считающиеся основными инструментами нанотехнологий. Таким образом, литературного героя Левшу можно считать первым в истории «нанотехнологом».

Некоторые отрицательные последствия неконтролируемого развития нанотехнологий описаны в произведениях М. Крайтона («Рой»), С. Лема («Осмотр на месте» и «Мир на Земле »), С. Лукьяненко («Нечего делить»).

В научно-фантастическом сериале «Звёздные врата: ЗВ-1 » одной из самых технически и социально развитых рас является раса «репликаторов», возникшая в результате неудавшегося опыта Древних с использованием и описанием различных вариантов применения нанотехнологий. В фильме «День, когда Земля остановилась » с Киану Ривзом в главной роли, инопланетная цивилизация выносит человечеству смертный приговор и чуть было не уничтожает все на планете при помощи самовоспроизводящихся нанорепликантов-жуков, пожирающих все на своем пути.

В фильмах "Терминатор 2" и "Терминатор 3" нанотехнологии представлены в виде роботов «Т-1000» и «Тэ-Икс»

Форумы и выставки

Роснано 2010

Первый в России Международный форум по нанотехнологиям Rusnanotech прошел в 2008 году , впоследствии ставший ежегодным. Работа по организации Международного форума по нанотехнологиям проводилась в соответствии с Концепцией, одобренной наблюдательным советом ГК «Роснанотех » 31 января г. и распоряжением Правительства Российской Федерации № 1169-р от 12.08.2008 г. Форум прошел с 3 по 5 декабря г. в г. Москве в Центральном выставочном комплексе «Экспоцентр». Программа Форума состояла из деловой части, научно-технологических секций, стендовых докладов, докладов участников Международного конкурса научных работ молодых ученых в области нанотехнологий и выставки.

Всего в мероприятиях Форума приняло участие 9024 участника и посетителя из России и 32-х зарубежных стран, в том числе:

  • 4048 участника конгрессной части Форума
  • 4212 посетителя выставки
  • 559 стендист
  • 205 представителей СМИ освещали работу Форума

Критика нанотехнологий

Критика нанотехнологий сосредоточилась в основном в двух направлениях:

См. также

  • Spinhenge@home - проект распределённых вычислений в области нанотехнологий (Молекулярные магниты: Наноуровень управления магнетизмом)
  • Изучение влияния нанотехнологии (англ. )

Литература

  • Алфимова М.М. Занимательные нанотехнологии. - М .: Бином, 2011. - С. 96.
  • Головин Ю.И. Наномир без формул. - М .: Бином, 2012. - С. 543.
  • Гудилин Е.А. и др. Богатство наномира. Фоторепортаж из глубин вещества. - М .: Бином, 2009. - С. 176.
  • Деффейс К., Деффейс С. Удивительные наноструктуры / пер. с англ.. - М .: Бином, 2011. - С. 206.
  • К. Жоаким, Л. Плевер. Нанонауки. Невидимая революция. - М.: КоЛибри, 2009. Глава из книги
  • Малинецкий Г. Г. Нанотехнологии. От алхимии к химии и дальше// Интеграл. 2007, № 5, с.4-5.
  • Марк Ратнер, Даниэль Ратнер Нанотехнология: простое объяснение очередной гениальной идеи = Nanotechnology: A Gentle Introduction to the Next Big Idea. - М .: «Вильямс», 2006. - С. 240. - ISBN 0-13-101400-5
  • Хартманн У. Очарование нанотехнологии / пер. с нем. – 2-е изд.. - М .: Бином, 2010. - С. 173.
  • Эрлих Г. Малые объекты – большие идеи. Широкий взгляд на нанотехнологии.. - М .: Бином, 2011. - С. 254.